Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing cell-free DNA: plasma circulating tumour DNA for liquid biopsy in genitourinary cancers

Abstract

In the era of precision oncology, liquid biopsy techniques, especially the use of plasma circulating tumour DNA (ctDNA) analysis, represent a paradigm shift in the use of genomic biomarkers with considerable implications for clinical practice. Compared with tissue-based tumour DNA analysis, plasma ctDNA is more convenient to test, more readily accessible, faster to obtain and less invasive, minimizing procedure-related risks and offering the opportunity to perform serial monitoring. Additionally, genomic profiles of ctDNA have been shown to reflect tumour heterogeneity, which has important implications for the identification of resistant clones and selection of targeted therapy well before clinical and radiographic changes occur. Moreover, plasma ctDNA testing can also be applied to cancer screening, risk stratification and quantification of minimal residual disease. These features provide an unprecedented opportunity for early treatment of patients, improving the chances of treatment success.

Key points

  • Precision medicine entails the targeting of therapy according to the presence of specific genomic biomarkers; thus, the ability to detect such biomarkers is of paramount importance.

  • Liquid biopsies are non-invasive and fast and can be repeatedly performed throughout a disease course and during treatment to provide information on tumour heterogeneity and to capture the emergence of resistant clones.

  • Circulating tumour DNA (ctDNA) analysis offers the opportunity to identify treatment failures well before clinical and radiographic progression, enabling early interventions and possibly increasing the chances of treatment success.

  • Characterization of a tumour’s genomic landscape using ctDNA analysis can identify predictive biomarkers for patient selection and enrolment in clinical trials.

  • ctDNA yield depends on various factors, including time of blood sample acquisition relative to treatment and response, tumour mutational and disease burden, and the amount of tumour-derived cell-free DNA (cfDNA), which should be considered when ordering and interpreting the test.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clonal evolution of cancer.
Fig. 2: Circulating nucleic acid origins and clearance.
Fig. 3: ctDNA collection and analysis.
Fig. 4: Clinical applicability of ctDNA across genitourinary malignancies.

Similar content being viewed by others

References

  1. Weinberg, R. The Biology of Cancer2nd edn. (Taylor & Francis, 2013).

  2. Mok, T. S. et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  3. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    CAS  PubMed  Google Scholar 

  5. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  7. Swanton, C. Intratumour heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Faltas, B. M. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat. Genet. 48, 1490–1499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lanman, R. B. et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PloS One10, e0140712 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Mok, T. S. et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640 (2017).

    CAS  PubMed  Google Scholar 

  12. Mandel, P. & Metais, P. Les acides nucléiques du plasma sanguin chez l’homme. C. R. Seances Soc. Biol. Fil. 142, 241–243 (1948).

    CAS  PubMed  Google Scholar 

  13. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    CAS  PubMed  Google Scholar 

  14. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  15. Stroun, M., Lyautey, J., Lederrey, C., Olson-Sand, A. & Anker, P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta. 313, 139–142 (2001).

    CAS  PubMed  Google Scholar 

  16. Leon, S. A., Shapiro, B., Sklaroff, D. M. & Yaros, M. J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 37, 646–650 (1977).

    CAS  PubMed  Google Scholar 

  17. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra24 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. USA 102, 16368–16373 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gormally, E., Caboux, E., Vineis, P. & Hainaut, P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat. Res. 635, 105–117 (2007).

    CAS  PubMed  Google Scholar 

  20. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl Med. 10, eaat4921 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Jiang, P. et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 115, E10925–E10933 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, B. G. et al. Increased plasma DNA integrity in cancer patients. Cancer Res. 63, 3966–3968 (2003).

    CAS  PubMed  Google Scholar 

  23. Gao, Y. J. et al. Increased integrity of circulating cell-free DNA in plasma of patients with acute leukemia. Clin. Chem. Lab. Med. 48, 1651–1656 (2010).

    CAS  PubMed  Google Scholar 

  24. Yi, X. et al. The feasibility of using mutation detection in ctDNA to assess tumor dynamics. Int. J. Cancer 140, 2642–2647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lo, Y. M. et al. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 64, 218–224 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  27. Scholer, L. V. et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin. Cancer Res. 23, 5437–5445 (2017).

    CAS  PubMed  Google Scholar 

  28. Overman, M. J. et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J. Clin. Oncol. 31, 17–22 (2013).

    PubMed  Google Scholar 

  29. Rothe, F. et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann. Oncol. 25, 1959–1965 (2014).

    CAS  PubMed  Google Scholar 

  30. Younossi, Z. M., Teran, J. C., Ganiats, T. G. & Carey, W. D. Ultrasound-guided liver biopsy for parenchymal liver disease: an economic analysis. Dig. Dis. Sci. 43, 46–50 (1998).

    CAS  PubMed  Google Scholar 

  31. Kelly, R. J. et al. Complications and economic burden associated with obtaining tissue for diagnosis and molecular analysis in patients with non-small-cell lung cancer in the United States. J. Oncol. Pract. 15, e717–e727 (2019).

    PubMed  Google Scholar 

  32. Arnaud, A. Costs and outcomes comparison of tissue and blood based biopsies for the purpose of biomarker testing. Value Health 19, A143–A144 (2016).

    Google Scholar 

  33. Khleif, S. N., Doroshow, J. H. & Hait, W. N. AACR-FDA-NCI cancer biomarkers collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin. Cancer Res. 16, 3299–3318 (2010).

    CAS  PubMed  Google Scholar 

  34. Ileana Dumbrava, E., Meric-Bernstam, F. & Yap, T. A. Challenges with biomarkers in cancer drug discovery and development. Expert. Opin. Drug. Discov. 13, 685–690 (2018).

    CAS  PubMed  Google Scholar 

  35. Hilton, J. F. et al. Acquisition of metastatic tissue from patients with bone metastases from breast cancer. Breast Cancer Res. Treat. 129, 761–765 (2011).

    CAS  PubMed  Google Scholar 

  36. Holmes, M. G. et al. CT-guided bone biopsies in metastatic castration-resistant prostate cancer: factors predictive of maximum tumor yield. J. Vasc. Interv. Radiol. 28, 1073–1081.e1 (2017).

    PubMed  Google Scholar 

  37. Wyatt, A. W. et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2, 1598–1606 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. De Mattos-Arruda, L. et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann. Oncol. 25, 1729–1735 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Pal, S. K. et al. Evolution of circulating tumor DNA profile from first-line to subsequent therapy in metastatic renal cell carcinoma. Eur. Urol. 72, 557–564 (2017).

    CAS  PubMed  Google Scholar 

  40. Oxnard, G. R. et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin. Cancer Res. 20, 1698–1705 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Goodall, J. et al. Circulating free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 7, 1006–1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. El Messaoudi, S., Rolet, F., Mouliere, F. & Thierry, A. R. Circulating cell free DNA: preanalytical considerations. Clin. Chim. Acta 424, 222–230 (2013).

    CAS  PubMed  Google Scholar 

  43. Grolz, D. et al. Liquid biopsy preservation solutions for standardized pre-analytical workflows–venous whole blood and plasma. Curr. Pathobiol. Rep. 6, 275–286 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Okada, S., Yoshimori, M. & Kakizoe, T. Pancreatic cancer: medical aspects. Pancreas 16, 349–354 (1998).

    CAS  PubMed  Google Scholar 

  45. Jen, J., Johnson, C. & Levin, B. Molecular approaches for colorectal cancer screening. Eur. J. Gastroenterol. Hepatol. 10, 213–217 (1998).

    CAS  PubMed  Google Scholar 

  46. Ignatiadis, M. & Dawson, S. J. Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann. Oncol. 25, 2304–2313 (2014).

    CAS  PubMed  Google Scholar 

  47. Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oh, J. E. et al. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes. J. Mol. Diagn. 12, 418–424 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Watanabe, K. et al. EGFR mutation analysis of circulating tumor DNA using an improved PNA-LNA PCR clamp method. Can. Respir. J. 2016, 5297329 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Spindler, K. L. G., Pallisgaard, N., Vogelius, I. & Jakobsen, A. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin. Cancer Res. 18, 1177–1185 (2012).

    CAS  PubMed  Google Scholar 

  51. Milbury, C. A. et al. Multiplex amplification coupled with COLD-PCR and high resolution melting enables identification of low-abundance mutations in cancer samples with low DNA content. J. Mol. Diagn. 13, 220–232 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Diehl, F. et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat. Methods 3, 551–559 (2006).

    CAS  PubMed  Google Scholar 

  53. Sanmamed, M. F. et al. Quantitative cell-free circulating BRAF(V600E) mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin. Chem. 61, 297–304 (2015).

    CAS  PubMed  Google Scholar 

  54. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Han, X., Wang, J. Y. & Sun, Y. L. Circulating tumor DNA as biomarkers for cancer detection. Genom. Proteom. Bioinf. 15, 59–72 (2017).

    Google Scholar 

  56. Ehlert, T. et al. Establishing PNB-qPCR for quantifying minimal ctDNA concentrations during tumour resection. Sci. Rep. 7, 8876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Oxnard, G. R., Paweletz, C. P. & Sholl, L. M. Genomic analysis of plasma cell-free DNA in patients with cancer. JAMA Oncol. 3, 740–741 (2017).

    PubMed  Google Scholar 

  58. Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl Med. 4, 136ra68 (2012).

    PubMed  Google Scholar 

  59. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 9530–9535 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 552–558 (2014).

    Google Scholar 

  61. Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl Med. 4, 162ra154 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Diaz, L. A., Sausen, M., Fisher, G. A. & Velculescu, V. E. Insights into therapeutic resistance from whole-genome analyses of circulating tumor DNA. Oncotarget 4, 1856–1857 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Chan, K. C. A. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59, 211–224 (2013).

    CAS  PubMed  Google Scholar 

  65. Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl Med. 2, 20ra14 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Schram, A. M., Berger, M. F. & Hyman, D. M. Precision oncology: charting a path forward to broader deployment of genomic profiling. PLoS Med. 14, e1002242 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Heitzer, E., Ulz, P. & Geigl, J. B. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 61, 112–123 (2015).

    CAS  PubMed  Google Scholar 

  68. Drago, A., De Ronchi, D. & Serretti, A. Incomplete coverage of candidate genes: a poorly considered bias. Curr. Genomics 8, 476–483 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. van Amerongen, R. A. et al. Next-generation sequencing in NSCLC and melanoma patients: a cost and budget impact analysis. Ecancermedicalscience 10, 684 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Ahmadzada, T. et al. An update on predictive biomarkers for treatment selection in non-small cell lung cancer. J. Clin. Med. 7, 153 (2018).

    PubMed Central  Google Scholar 

  71. Pennell, N. A. et al. Economic impact of next generation sequencing vs sequential single-gene testing modalities to detect genomic alterations in metastatic non-small cell lung cancer using a decision analytic model [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 9031 (2018).

    Google Scholar 

  72. Stenzinger, A. et al. Tumor mutational burden standardization initiatives: recommendations for consistent tumor mutational burden assessment in clinical samples to guide immunotherapy treatment decisions. Genes. Chromosomes Cancer 58, 578–588 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wyatt, A. W. et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J. Natl Cancer Inst. 109, djx118 (2017).

    PubMed Central  Google Scholar 

  76. Lorente, D. et al. Castration-resistant prostate cancer tissue acquisition from bone metastases for molecular analyses. Clin. Genitourin. Cancer 14, 485–493 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. McKay, R. R. et al. Imaging, procedural and clinical variables associated with tumor yield on bone biopsy in metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 17, 325–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vandekerkhove, G. et al. Circulating tumor DNA abundance and potential utility in de novo metastatic prostate cancer. Eur. Urol. 75, 667–675 (2019).

    CAS  PubMed  Google Scholar 

  79. De Laere, B. et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 25, 1766–1773 (2019).

    PubMed  Google Scholar 

  80. Boysen, G. et al. SPOP-mutated/CHD1-deleted lethal prostate cancer and abiraterone sensitivity. Clin. Cancer Res. 24, 5585–5593 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Nava Rodrigues, D. et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. J. Clin. Invest. 128, 4441–4453 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hahn, A. W. et al. Correlation of genomic alterations assessed by next-generation sequencing (NGS) of tumor tissue DNA and circulating tumor DNA (ctDNA) in metastatic renal cell carcinoma (mRCC): potential clinical implications. Oncotarget 8, 33614–33620 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Barata, P. C. et al. Next-generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in patients with advanced urothelial cancer: a pilot assessment of concordance. Ann. Oncol. 28, 2458–2463 (2017).

    CAS  PubMed  Google Scholar 

  85. Schwaederle, M. C. et al. Utility of genomic assessment of blood-derived circulating tumor DNA (ctDNA) in patients with advanced lung adenocarcinoma. Clin. Cancer Res. 23, 5101–5111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, S. T. et al. Prospective blinded study of somatic mutation detection in cell-free DNA utilizing a targeted 54-gene next generation sequencing panel in metastatic solid tumor patients. Oncotarget 6, 40360–40369 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Mok, T. et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin. Cancer Res. 21, 3196–3203 (2015).

    CAS  PubMed  Google Scholar 

  88. Torga, G. & Pienta, K. J. Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol. 4, 868–870 (2018).

    PubMed  Google Scholar 

  89. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Mayrhofer, M. et al. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med. 10, 85 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hahn, A. W., Nussenzveig, R. H., Pal, S. K. & Agarwal, N. Blood- and tissue-based tumor genomics: a battle royale or match made in heaven? Ann. Oncol. 28, 2333–2335 (2017).

    CAS  PubMed  Google Scholar 

  92. Maia, M. C. et al. Association of circulating tumor DNA (ctDNA) detection in metastatic renal cell carcinoma (mRCC) with tumor burden. Kidney Cancer 1, 65–70 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl Med. 9, eaan2415 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. National Comprehensive Cancer Network. Kidney cancer (version 4.2018). NCCN https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf (2018).

  95. Grimes, A. D. & Schulz, K. F. Epidemiology 2: compared to what? Finding controls for case-control studies. Lancet 365, 1429–1433 (2005).

    PubMed  Google Scholar 

  96. Janzen, N. K., Kim, H. L., Figlin, R. A. & Belldegrun, A. S. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol. Clin. North Am. 30, 843–852 (2003).

    PubMed  Google Scholar 

  97. Al-Qassab, U. et al. PNFBA-12 liquid biopsy for renal cell carcinoma. J. Urol. 197, e913–e914 (2017).

    Google Scholar 

  98. Hauser, S. et al. Cell-free circulating DNA: diagnostic value in patients with renal cell cancer. Anticancer Res. 30, 2785–2789 (2010).

    CAS  PubMed  Google Scholar 

  99. Skrypkina, I. et al. Concentration and methylation of cell-free DNA from blood plasma as diagnostic markers of renal cancer. Dis. Markers 2016, 3693096 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Tie, J. et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann. Oncol. 26, 1715–1722 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Beaver, J. A. et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 20, 2643–2650 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, Z. et al. Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS One 4, e7220 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. Wan, J., Zhu, L., Jiang, Z. & Cheng, K. Monitoring of plasma cell-free DNA in predicting postoperative recurrence of clear cell renal cell carcinoma. Urol. Int. 91, 273–278 (2013).

    CAS  PubMed  Google Scholar 

  104. Lu, H. et al. Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients. Clin. Chim. Acta 452, 109–119 (2016).

    CAS  PubMed  Google Scholar 

  105. Thompson, J. C. et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin. Cancer Res. 22, 5772–5782 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sacher, A. G. et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2, 1014–1022 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Oxnard, G. R. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 3375–3382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Thress, K. S. et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD929. Lung Cancer 90, 509–515 (2015).

    PubMed  Google Scholar 

  109. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  Google Scholar 

  110. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  111. Ferrero, A. et al. Understanding, justifying, and optimizing radiation exposure for CT imaging in nephrourology. Nat. Rev. Urol. 16, 231–244 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. Lee, J. H. et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 4, 717–721 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Dizman, N. et al. Exceptional response to nivolumab rechallenge in metastatic renal cell carcinoma with parallel changes in genomic profile. Eur. Urol. 73, 308–310 (2018).

    PubMed  Google Scholar 

  114. Maia, M. C., Dizman, N., Salgia, M. & Pal, S. K. Therapeutic sequencing in metastatic renal cell carcinoma. Kidney Cancer 1, 15–29 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    CAS  PubMed  Google Scholar 

  116. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Brott, T. Treatment of acute ischemic stroke. N. Engl. J. Med. 343, 710–722 (2000).

    CAS  PubMed  Google Scholar 

  118. Choueiri, T. K. et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J. Clin. Oncol. 35, 591–597 (2017).

    CAS  PubMed  Google Scholar 

  119. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Gandara, D. R. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat. Med.24, 1441–1448 (2018).

    CAS  PubMed  Google Scholar 

  122. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ferrone, S. & Gameiro, S. R. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer 133, 624–636 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Maia, M. C., Almeida, L., Bergerot, P. G., Dizman, N. & Pal, S. K. Relationship of tumor mutational burden (TMB) to immunotherapy response in metastatic renal cell carcinoma (mRCC) [abstract]. J. Clin. Oncol. 36 (Suppl. 6), 662 (2018).

    Google Scholar 

  125. Khagi, Y. et al. Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin. Cancer Res. 23, 5729–5736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, Z. et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol. 5, 696–702 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Jordan, B. & Meeks, J. J. T1 bladder cancer: current considerations for diagnosis and management. Nat. Rev. Urol. 16, 23–34 (2019).

    PubMed  Google Scholar 

  128. Chang, S. S. et al. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. J. Urol. 198, 552–559 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur. Urol. 71, 447–461 (2017).

    PubMed  Google Scholar 

  130. Birkenkamp-Demtroder, K. et al. Genomic alterations in liquid biopsies from patients with bladder cancer. Eur. Urol. 70, 75–82 (2016).

    CAS  PubMed  Google Scholar 

  131. Christensen, E. et al. Liquid biopsy analysis of FGFR3 and PIK3CA hotspot mutations for disease surveillance in bladder cancer. Eur. Urol. 71, 961–969 (2017).

    CAS  PubMed  Google Scholar 

  132. Birkenkamp-Demtröder, K. et al. Monitoring treatment response and metastatic relapse in advanced bladder cancer by liquid biopsy analysis. Eur. Urol. 73, 535–540 (2017).

    PubMed  Google Scholar 

  133. Todenhöfer, T. et al. Using liquid biopsy to assess the genomic landscape of metastatic urothelial carcinoma [abstract 385]. Eur. Urol. Suppl. 16, e677–e678 (2017).

    Google Scholar 

  134. Bellmunt, J., Powles, T. & Vogelzang, N. J. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat. Rev. 54, 58–67 (2017).

    CAS  PubMed  Google Scholar 

  135. Rosenberg, J. E. et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J. Clin. Oncol. 37, 2592–2600 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Loriot, Y. et al. Erdafitinib (ERDA; JNJ-42756493), a pan-fibroblast growth factor receptor (FGFR) inhibitor, in patients (pts) with metastatic or unresectable urothelial carcinoma (mUC) and FGFR alterations (FGFRa): phase 2 continuous versus intermittent dosing [abstract]. J. Clin. Oncol. 36 (Suppl. 6), 411 (2018).

    Google Scholar 

  137. Challita-Eid, P. M. et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76, 3003–3013 (2016).

    CAS  PubMed  Google Scholar 

  138. Iyer, G. et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 338, 221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Choudhury, N. J. et al. Afatinib activity in platinum-refractory metastatic urothelial carcinoma in patients with ERBB alterations. J. Clin. Oncol. 34, 2165–2171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Plimack, E. R. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur. Urol. 68, 959–967 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    CAS  PubMed  Google Scholar 

  143. Agarwal, N. et al. Characterization of metastatic urothelial carcinoma via comprehensive genomic profiling of circulating tumor DNA. Cancer 124, 2115–2124 (2018).

    CAS  PubMed  Google Scholar 

  144. Grivas, P. et al. Circulating tumor (ct)-DNA alterations in advanced urothelial carcinoma: association with outcomes and evolution with therapy [abstract]. J. Clin. Oncol. 35, 334 (2017).

    Google Scholar 

  145. Hussain, M. et al. PROfound: phase III study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene alterations [abstract LBA12_PR]. Ann. Oncol. 30 (Suppl. 5), v881–v882 (2019).

    Google Scholar 

  146. Golan, T. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Anguera, G. & Majem, M. BRAF inhibitors in metastatic non-small cell lung cancer. J. Thorac. Dis. 10, 589–592 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. Planchard, D. et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 17, 984–993 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    CAS  PubMed  Google Scholar 

  150. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Jiang, T. et al. Accurate measurement of tumor mutation burden in liquid biopsy (bTMB) using a 500 gene panel [abstract 163P]. Ann. Oncol. 29 (Suppl. 8), viii51 (2018).

    Google Scholar 

  152. Quinn, K. et al. Development and analytical validation of a plasma-based tumor mutational burden (TMB) score from next-generation sequencing panels [abstract 131P]. Ann. Oncol. 29 (Suppl. 8), viii41 (2018).

    Google Scholar 

  153. Raja, R. et al. Early reduction in ctDNA predicts survival in patients with lung and bladder cancer treated with durvalumab. Clin. Cancer Res. 24, 6212–6222 (2018).

    PubMed  Google Scholar 

  154. Global Burden of Disease Collaboration Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 3, 524–548 (2017).

    Google Scholar 

  155. Abdollah, F. et al. Comparison of mortality outcomes after radical prostatectomy versus radiotherapy in patients with localized prostate cancer: a population-based analysis. Int. J. Urol. 19, 836–844 (2012).

    PubMed  Google Scholar 

  156. Fleshner, K., Carlsson, S. V. & Roobol, M. J. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat. Rev. Urol. 14, 26–37 (2017).

    CAS  PubMed  Google Scholar 

  157. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    CAS  PubMed  Google Scholar 

  158. Schwarzenbach, H. et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin. Cancer Res. 15, 1032–1038 (2009).

    CAS  PubMed  Google Scholar 

  159. Chun, F. K. et al. Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer. BJU Int. 98, 544–548 (2006).

    CAS  PubMed  Google Scholar 

  160. Altimari, A. et al. Diagnostic role of circulating free plasma DNA detection in patients with localized prostate cancer. Am. J. Clin. Pathol. 129, 756–762 (2008).

    CAS  PubMed  Google Scholar 

  161. D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    PubMed  Google Scholar 

  162. ICECaP Working Group The development of intermediate clinical endpoints in cancer of the prostate (ICECaP). J. Natl Cancer Inst. 107, djv261 (2015).

    PubMed Central  Google Scholar 

  163. Spratt, D. E. et al. Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J. Clin. Oncol. 36, 581–590 (2018).

    PubMed  Google Scholar 

  164. Gorin, M. A. et al. Circulating tumour cells as biomarkers of prostate, bladder, and kidney cancer. Nat. Rev. Urol. 14, 90–97 (2017).

    CAS  PubMed  Google Scholar 

  165. Heller, G. et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: a comparison with prostate-specific antigen across five randomized phase III clinical trials. J. Clin. Oncol. 36, 572–580 (2018).

    CAS  PubMed  Google Scholar 

  166. Scher, H. I. et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 33, 1348–1355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Scher, H. I. et al. Clinical outcome of metastatic castration-resistant prostate cancer (mCRPC) patients (pts) with a post-treatment circulating tumor cell (CTC) of 0 vs CTC>0: post hoc analysis of COU-AA-301 [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 5015 (2017).

    Google Scholar 

  168. Lorente, D. et al. Decline in circulating tumor cell count and treatment outcome in advanced prostate cancer. Eur. Urol. 70, 985–992 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Antonarakis, E. S. et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J. Clin. Oncol. 35, 2149–2156 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kohli, M. et al. Prognostic association of plasma cell-free DNA-based androgen receptor amplification and circulating tumor cells in pre-chemotherapy metastatic castration-resistant prostate cancer patients. Prostate Cancer Prostatic Dis. 21, 411–418 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Annala, M. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 8, 444–457 (2018).

    CAS  PubMed  Google Scholar 

  172. Choudhury, A. D. et al. Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight 3, e122109 (2018).

    PubMed Central  Google Scholar 

  173. Costelloe, C. M., Chuang, H. H., Madewell, J. E. & Ueno, N. T. Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J. Cancer 1, 80–92 (2010).

    PubMed  PubMed Central  Google Scholar 

  174. Wyatt, A. W. et al. Genomic alterations in circulating tumor DNA (ctDNA) are associated with clinical outcomes in treatment-naive metastatic castration-resistant prostate cancer (mCRPC) patients commencing androgen receptor (AR)-targeted therapy [abstract 56P]. Ann. Oncol. 27 (Suppl. 6), vi17 (2016).

    Google Scholar 

  175. Azad, A. A. et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 21, 2315–2324 (2015).

    CAS  PubMed  Google Scholar 

  176. Antonarakis, E. S. et al. Germline DNA-repair gene mutations and outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide. Eur. Urol. 74, 218–225 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hussain, M. et al. Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: results from NCI 9012. J. Clin. Oncol. 36, 991–999 (2018).

    CAS  PubMed  Google Scholar 

  178. Cheng, H. H., Pritchard, C. C., Boyd, T., Nelson, P. S. & Montgomery, B. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur. Urol. 69, 992–995 (2016).

    CAS  PubMed  Google Scholar 

  179. Quigley, D. et al. Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov. 7, 999–1005 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Velho, P. I. et al. Efficacy of radium-223 in bone-metastatic castration-resistant prostate cancer with and without homologous repair gene defects. Eur. Urol. 76, 170–176 (2019).

    Google Scholar 

  182. Tannock, I. F. & Hickman, J. A. Limits to precision cancer medicine. N. Engl. J. Med. 376, 96–97 (2017).

    PubMed  Google Scholar 

  183. Meric-Bernstam, F. et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J. Clin. Oncol. 33, 2753–2762 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Stockley, T. L. et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the Princess Margaret IMPACT/COMPACT trial. Genome Med. 8, 109 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02535351 (2018).

  186. Soares, A., Maia, M. C., Vidigal, F. & Marques Monteiro, F. S. Cytoreductive nephrectomy for metastatic renal cell carcinoma: how to apply new evidence in clinical practice. Oncology 98, 1–9 (2020).

    PubMed  Google Scholar 

  187. Mejean, A. et al. Sunitinib alone or after nephrectomy in metastatic renal-cell carcinoma. N. Engl. J. Med. 379, 417–427 (2018).

    CAS  PubMed  Google Scholar 

  188. Bex, A. et al. Comparison of immediate vs deferred cytoreductive nephrectomy in patients with synchronous metastatic renal cell carcinoma receiving sunitinib: the SURTIME Randomized Clinical Trial. JAMA Oncol. 5, 164–170 (2019).

    PubMed  Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03469713 (2018).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03414827 (2019).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03091192 (2019).

  192. Nandagopal, L., Sonpavde, G. P. & Agarwal, N. Investigational MET inhibitors to treat renal cell carcinoma. Expert. Opin. Investig. Drugs 28, 851–860 (2019).

    CAS  PubMed  Google Scholar 

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02546661 (2020).

  194. Loriot, Y. et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 381, 338–348 (2019).

    CAS  PubMed  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03263039 (2019).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03385655 (2020).

  197. Mateo, J. et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21, 162–174 (2020).

    PubMed  PubMed Central  Google Scholar 

  198. de Bono, J. S. et al. Randomized phase II study evaluating akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin. Cancer Res. 25, 928–936 (2019).

    PubMed  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02952534 (2020).

  200. Torgovnick, A. & Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 6, 157 (2015).

    PubMed  PubMed Central  Google Scholar 

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02975934 (2020).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03228810 (2019).

  203. James, N. D. et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 6736, 1–15 (2015).

    Google Scholar 

  204. Decaestecker, K. et al. Surveillance or metastasis-directed Therapy for OligoMetastatic Prostate cancer recurrence (STOMP): study protocol for a randomized phase II trial. BMC Cancer 14, 671 (2014).

    PubMed  PubMed Central  Google Scholar 

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02826772 (2019).

  206. Dellis, A. E. & Papatsoris, A. G. Perspectives on the current and emerging chemical androgen receptor antagonists for the treatment of prostate cancer. Expert. Opin. Pharmacother. 20, 163–172 (2019).

    CAS  PubMed  Google Scholar 

  207. Conteduca, V. et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann. Oncol. 28, 1508–1516 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03677414 (2018).

  209. Chen, Z., Wang, L., Wang, Q. & Li, W. Histone modifications and chromatin organization in prostate cancer. Epigenomics 2, 551–560 (2010).

    CAS  PubMed  Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03522064 (2019).

  211. Chuu, C. P., Hiipakka, R. A., Fukuchi, J., Kokontis, J. M. & Liao, S. Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer Res. 65, 2082–2084 (2005).

    CAS  PubMed  Google Scholar 

  212. Teply, B. A. et al. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol. 19, 76–86 (2018).

    CAS  PubMed  Google Scholar 

  213. Chen, J., Joshua, A. M., Denmeade, S. R., Antonarakis, E. S. & Crumbaker, M. High dose testosterone in men with metastatic castrate-resistant prostate cancer (mCRPC) and homologous recombination deficiency (HRD) [abstract]. J. Clin. Oncol. 37 (Suppl. 15), TPS5095 (2019).

    Google Scholar 

  214. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03644303 (2019).

  216. Palma, D. A. et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393, 2051–2058 (2019).

    PubMed  Google Scholar 

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02735252 (2019).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02889978 (2019).

  219. Liu, M. C. et al. Plasma cell-free DNA (cfDNA) assays for early multi-cancer detection: the circulating cell-free genome atlas (CCGA) study [abstract 50O]. Ann. Oncol. 29 (Suppl. 8), viii14 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.C.M. and M.S. researched data for and wrote the article. M.C.M. and S.K.P. made substantial contributions to discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Manuel Caitano Maia.

Ethics declarations

Competing interests

M.C.M. has received speaker’s fees from Pfizer, Astellas, AstraZeneca and BMS, educational meeting sponsorship from Astellas, Jansen, BMS, Libbs, Roche, Ipsen, MSD, Novartis and Bayer, and consulting fees from AstraZeneca and MSD. S.K.P. has received consulting fees from Genentech, Aveo, Eisai, Roche, Pfizer, Novartis, Exelixis, Ipsen, BMS and Astellas. M.S. declares no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks M. Annala, E. Christensen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Whole-genome sequencing

A laboratory process that is used to determine nearly all nucleotides of an individual’s complete DNA sequence, including coding and non-coding sequences.

Predictive biomarker

A biological variable that is associated with a response or lack of response to a particular agent or therapy.

Sanger sequencing

A low-throughput method used to determine a portion of the nucleotide sequence of an individual’s genome. This technique uses PCR amplification of genetic regions of interest followed by sequencing of PCR products.

Deep sequencing

It refers to sequencing a particular genomic region multiple times, sometimes hundreds or even thousands of times.

Next-generation sequencing

(NGS). A high-throughput method used to determine a portion of the nucleotide sequence of an individual’s genome. This technique utilizes DNA sequencing technologies that are capable of processing multiple DNA sequences in parallel.

Whole-exome sequencing

(WES). A laboratory process that is used to determine the nucleotide sequence primarily of the exonic (or protein-coding) regions of an individual’s genome and related sequences, which represents approximately 1% of the complete DNA sequence.

Tumour mutational burden

(TMB). The total number of mutations found in tumour DNA of a particular patient. It has been shown to correlate with response to immunotherapy (checkpoint inhibitors). In general, most authors consider a high TMB as ≥10 mutations per megabase (mut/Mb) and low TMB anything below this.

Biomarker

Any biological variable that can be measured and whose presence indicates a disease state and/or disease severity cut-off, although there is no standard definition.

Intrapatient spatial heterogeneity

The expected differences in DNA sequences across different metastatic sites in a given patient.

Variant allelic fractions

(VAFs). The incidence of a gene variant (allele) in a person. Alleles are variant forms of a gene that are located at the same position (genetic locus). It is calculated by dividing the number of times the allele is observed by the total number of copies of all the alleles at that particular genetic locus and can be expressed as a percentage or fraction.

Pseudoprogression

Radiologically, it is defined as the development of a new or enlarging area (or areas) in the absence of true tumour growth, which usually subsides or stabilizes without a change in therapy. It can occur weeks to months after finishing radiation therapy (most commonly to a brain tumour, for example) but has been shown to occur after initiation of immunotherapies (such as checkpoint inhibitors). The potential mechanisms behind pseudoprogression are related to tumour necrosis with associated oedema (especially after radiation exposure) or immune cell infiltration of the tumour (in the case of treatment with immunotherapies).

Prognostic biomarker

A biological variable associated with clinical outcomes regardless of therapy received.

Circulating Cell-Free Genome Atlas

(CCGA). It is an ongoing international prospective, observational study developed to characterize the landscape of genomic cancer alterations in the blood of people with and without cancer. The study includes both people with a diagnosis of cancer and people without a known diagnosis of cancer. The objectives of the study are to discover, develop and validate a blood test for early cancer detection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, M.C., Salgia, M. & Pal, S.K. Harnessing cell-free DNA: plasma circulating tumour DNA for liquid biopsy in genitourinary cancers. Nat Rev Urol 17, 271–291 (2020). https://doi.org/10.1038/s41585-020-0297-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0297-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer