Skip to main content
Log in

Retardation Effect of Tin Multilayer on Sn-3.0Ag-0.5Cu (SAC305)-Based Solder Joint Interface

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Transient liquid phase-like soldering technique has been successfully applied to prepare lead-free solder joints at 230 °C. Multiple interlayers of tin thin films in combination with a Sn-3.0Ag-0.5Cu (SAC305) solder paste have been used as filler for joining. Microstructural analysis was carried out by electron microscopy and energy-dispersive spectroscopy. For interlayer containing samples (Cu-Sn-SAC305-Sn-Cu), interfacial intermetallics layers found to be more homogeneous compared to the samples without interlayers (Cu-SAC305-Cu). Quality of the joints has been investigated nondestructively by ultrasonic method. On measuring the electrical resistivity by four-probe method, Cu-Sn-SAC305-Sn-Cu solder joint shows lower electrical resistivity compared to that of the Cu-SAC305-Cu solder joint, wherein nonlinear ultrasonic parameters confirm the superiority of former over later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Kar, M. Ghosh, B.S. Majumdar, R.N. Ghosh, and A.K. Ray, Interfacial Microstructure, Shear Strength and Electrical Conductivity of Sn-3.5Ag-0.5In/Cu Lead Free Soldered Joints, Mater. Tech., 2007, 22(3), p 161–165

    Article  CAS  Google Scholar 

  2. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Solid-State Reactions Between Ni and Sn-Ag-Cu Solders with Different Cu Concentrations, Mater. Sci. Eng., A, 2005, 396(1), p 385–391

    Article  CAS  Google Scholar 

  3. S. Cheng, C.M. Huang, and M. Pecht, A Review of Lead-Free Solders for Electronics Applications, Microelect. Reliab., 2017, 75, p 77–95

    Article  CAS  Google Scholar 

  4. R. Berni, M. Catelani, C. Fiesoli, and V.L. Scarano, A Comparison of Alloy-Surface Finish Combinations Considering Different Component Package Types and Their Impact on Soldering Reliability, IEEE Trans. Reliab., 2016, 65(1), p 272–281

    Article  Google Scholar 

  5. R. Coyle, K. Sweatman, and B. Arfaei, Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends, J. Miner. Metals Mater. Soc., 2015, 67(10), p 2394–2415

    Article  CAS  Google Scholar 

  6. A.M. Erer, O. Uyanik, and Y. Türen, Influence of Bismuth (Bi) Addition on Wetting Characteristics of Sn-3Ag-05Cu Solder Alloy on Cu Substrate, JESTECH, 2018, 21(6), p 1159–1163

    Google Scholar 

  7. M.I.I. Ramli, M.S.S. Yusof, M.A.A.M. Salleh, R.M. Said, and K. Nogita, Influence of Bi Addition on Wettability and Mechanical Properties of Sn-0.7Cu Solder Alloy, Solid State Phenomena. Trans. Tech. Publ., 2018, 273, p 27–33

    Article  Google Scholar 

  8. X. Hongyan and Y. Zhanfu, Interfacial Reaction Kinetics Between Liquid Sn-Ag-Cu Alloy and Cu Substrate, R. Metals Mater. Eng., 2014, 43, p 2893–2897

    Article  Google Scholar 

  9. M. Yang, Y.H. Koa, J.H. Bang, T.S. Kim, C.W. Lee, and M. Li, Effects of Ag Addition on Solid-State Interfacial Reactions Between Sn-Ag-Cu Solder and Cu Substrate, Mater. Charact., 2017, 124, p 250–259

    Article  CAS  Google Scholar 

  10. A.T. Tan, A.W. Tan, and F. Yusof, Influence of Nanoparticle Addition on the Formation and Growth of Intermetallics Compounds (IMCs) in Cu/Sn-Ag-Cu/Cu Solder Joint During Different Thermal Conditions, Sci. Technol. Adv. Mater., 2015, 033505(16), p 18

    Google Scholar 

  11. M. Ghosh, A. Kar, S.K. Das, and A.K. Ray, Aging Characteristics of Sn-Ag Eutectic Solder Alloy with the Addition of Cu, In, and Mn, Metal. Mater. Trans. A, 2009, 40(10), p 2369–2376

    Article  CAS  Google Scholar 

  12. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Interfacial Reaction in Cu/Sn/Cu System During the Transient Liquid Phase Soldering Process, Acta Mater., 2011, 59, p 1198–1211

    Article  CAS  Google Scholar 

  13. R. Kolenak, R. Augustin, M. Martinkovic, and M. Chachula, Comparison Study of SAC405 and SAC405 + 0.1% Al Lead Free Solders, Solder. Surf. Mount Technol., 2013, 25(3), p 175–183

    Article  CAS  Google Scholar 

  14. J.K. Kivilahti, The Chemical Modeling of Electronic Materials and Interconnections, JOM, 2002, 54(12), p 52–57

    Article  CAS  Google Scholar 

  15. T. Xu, X. Hu, Y. Li, and X. Jiang, The Growth Behavior of Interfacial Intermetallic Compound Between Sn-3.5Ag-0.5Cu Solder and Cu Substrate Under Different Thermal-Aged Conditions, J. Mater. Sci. Mater. Electr., 2017, 28(24), p 18515–18528

    Article  CAS  Google Scholar 

  16. C. Yang, F. Le, and S.W.R. Lee, Experimental Investigation of the Failure Mechanism of Cu–Sn Intermetallic Compounds in SAC305 Solder Joints, Microelectron. Reliab., 2016, 62, p 130–140

    Article  CAS  Google Scholar 

  17. T. Egar, M. Sadeghian, A. Ekrami, and R. Jamshidi, Transient Liquid Phase Bonding of 304 Stainless Steel Using a Co-Based Interlayer, Sci. Technol. Weld. Join., 2017, 22(8), p 666–672

    Article  CAS  Google Scholar 

  18. T. Laurila, J. Hurtig, V. Vuorinen, and J.K. Kivilahti, Effect of Ag, Fe, Au and Ni on the Growth Kinetics of Sn-Cu Intermetallic Compound Layers, Microelec. Reliab., 2009, 49, p 242–247

    Article  CAS  Google Scholar 

  19. P.Y. Chia, A.S.M.A. Haseeb, and S.H. Mannan, Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects, Materials, 2016, 9(6), p 430

    Article  CAS  Google Scholar 

  20. Q.V. Bui, N.D. Nam, J.W. Yoon, D.H. Choi, A. Kar, J.G. Kim, and S.B. Jung, Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish, J. Electr. Mater., 2011, 40(9), p 1937–1942

    Article  CAS  Google Scholar 

  21. L. Zhang, Z. Liu, F. Yang, and S. Zhong, Cu/SnAgCu/Cu TLP with Different Thicknesses for 3D IC, Solder. Surf. Mount. Tech., 2017, 29(3), p 151–155

    Article  Google Scholar 

  22. L.M. Lee, and A.A. Mohamad, Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review. Hindawi Publishing Corporation. Adv. Mater. Sci. Eng. 2013, 2013, p. 1–11

    Google Scholar 

  23. J. Lienig, and M. Thiele, Fundamentals of Electromigration-Aware Integrated Circuit Design, Springer International Publishing AG 2018, ISBN 978-3-319-73557-3

  24. T. An and F. Qin, Effect of the Intermetallic Compound Microstructure on the Tensile Behaviour of Sn3.0Ag0.5Cu/Cu Solder Joint Under Various Strain Rates, Microelectron. Reliab., 2014, 54, p 932–938

    Article  CAS  Google Scholar 

  25. S. Shang, A. Kunwar, Y. Wang, L. Qu, H. Ma, and Y. Wang, Growth Behavior of Preferentially Scalloped Intermetallic Compounds at Extremely Thin Peripheral Sn/Cu Interface, J. Mater. Sci.: Mater. Electr., 2019, 30(3), p 2872–2887

    CAS  Google Scholar 

  26. Y. Tang, S. Luo, G. Li, Z. Yang, and C. Hou, Ripening Growth Kinetics of Cu6Sn5 Grains in Sn-3.0Ag-0.5Cu-xTiO2/Cu Solder Joints During the Reflow Process, J. Electron. Packag., 2018, 140(1), p 011003

    Article  CAS  Google Scholar 

  27. S. Annuar, R. Mahmoodian, M. Hamdi, and K.N. Tu, Intermetallic Compounds in 3D Integrated Circuits Technology: A Brief Review, Sci. Technol. Adv. Mater., 2017, 18(1), p 1–11

    Article  Google Scholar 

  28. S. Shang, A. Kunwar, J. Yao, Y. Wang, N. Zhao, M. Huang, and H. Ma, All-Round Suppression of Cu6Sn5 Growth in Sn/Cu Joints by Utilizing TiO2 Nanoparticles, J. Mater. Sci.: Mater. Electron., 2018, 29(18), p 15966–15972

    CAS  Google Scholar 

  29. F. Xing, Q. Shang, Y. Lu, J. Liang, and X. Qiu, Intermetallic Compounds Growth Suppression in ZSCB Solder with RE Addition on Cu Substrate, J. Alloys Compd., 2016, 666, p 122–130

    Article  CAS  Google Scholar 

  30. Y. Huang, Z. Xiu, G. Wu, Y. Tian, P. He, X. Gu, and W. Long, Improving Shear Strength of Sn-3.0Ag-0.5Cu/Cu Joints and Suppressing Intermetallic Compounds Layer Growth by Adding Graphene Nanosheets, Mater. Lett., 2016, 169, p 262–264

    Article  CAS  Google Scholar 

  31. D. Yan, B.W. Drinkwater, and S.A. Neild, Measurement of the Ultrasonic Non Linearity of Kissing Bonds in Adhesive Joints, NDT&E Intern., 2009, 42(5), p 459–466

    Article  CAS  Google Scholar 

  32. M.S. Park, S.L. Gibbons, and R. Arroyave, Phase-Field Simulations of Intermetallic Compound Evolution in Cu/Sn Solder Joints Under Electromigration, Acta Mater., 2013, 61, p 7142–7154

    Article  CAS  Google Scholar 

  33. W.G. Zhai, X.M. Zhao, X.F. Li, M.J. Fan, X.H. Xu, X. Wang et al., Effect of Ce on Resistivity of Sn-3.8Ag-0.7Cu-xCe Lead-Free Solders, Phys. Chem. Liq., 2016, 54, p 37–41

    Article  CAS  Google Scholar 

  34. T.I. Shih, Y.C. Lin, J.G. Duh, Tom Hsu, and W.S. Wu, Electrical Measurement of a Lead-Free Solder Assembly After Environmental Tests by SEM Internal Probing, JOM, 2007, 59(7), p 32–37

    Article  CAS  Google Scholar 

  35. A. Yakymovych, V. Sklyarchuk, Y. Plevachuk, and B. Sokoliuk, Viscosity and Electrical Conductivity of the Liquid Sn-3.8Ag-0.7Cu Alloy with Minor Co Admixtures, J. Mater. Eng. Perform., 2016, 25(10), p 4437–4443

    Article  CAS  Google Scholar 

  36. M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, H. Yasuda, and K. Nogita, Suppression of Cu6Sn5 in TiO2 Reinforced Solder Joints After Multiple Reflow Cycles, Mater. Des., 2016, 108, p 418–428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the DST-SERB, Govt. of India for funding this research (Grant Ref. No. SB/FTP/ETA-136/2012, dated 20/05/2013) and also the Director, JBNSTS, Kolkata, for her continuous encouragement and support. Dr. Amit Kumar Chakraborty acknowledges the Centre of Excellence in Advanced Materials at NIT Durgapur (Grant Ref. No. AC/MHRD/TEQIP-II/CoE/2013, dated 4th April, 2013, of the MHRD, Govt. of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Char, M., Chakraborty, A.K., Metya, A.K. et al. Retardation Effect of Tin Multilayer on Sn-3.0Ag-0.5Cu (SAC305)-Based Solder Joint Interface. J. of Materi Eng and Perform 29, 2305–2315 (2020). https://doi.org/10.1007/s11665-020-04730-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04730-z

Keywords

Navigation