Skip to main content
Log in

Study of the Agglomeration Behaviour of Surface-Modified Molybdenum Powder

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The agglomeration behaviour of Mo powder, especially fine Mo powder, has been a major concern. The degree of powder agglomeration is directly related to the uniformity of Mo and its alloy powder mixtures and related target materials. This study mainly focuses on how to efficiently reduce the soft agglomerates behaviour of Mo powder. Analysis of the micromorphology and median particle size (D50) of modified Mo powder showed that the soft agglomerates behaviour of Mo powder can be divided into three stages: drawing, gathering, and sticking. Modification of the Mo powder surface by the polymer surfactant PVP-K30 can effectively prevent the agglomeration of the Mo powder. Additionally, the surface hydroxyl groups of the Mo powder disappeared, the agglomerate factor decreased from 13.02 to 5.04, and the flowability of the Mo powder was significantly improved. This is important for improving the grain uniformity and application performance of Mo target materials synthesized from Mo powder.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.C. Jha, Extractive Metallurgy of Molybdenum (Wiley, New Jersey, 2013)

    Google Scholar 

  2. J.H. Perepezko, The hotter the engine, the better. Science 326, 1068–1069 (2009)

    Article  CAS  Google Scholar 

  3. A.B. Li, L.J. Huang, Q.Y. Meng, Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α + β starting structure using processing map. Mater. Des. 30, 1625–1631 (2009)

    Article  CAS  Google Scholar 

  4. B. Gorr, M. Azim, H.J. Christ, Microstructure evolution in a new refractory high-entropy alloy W-Mo–Cr–Ti–Al. Matell. Mater. Trans. 47A, 961–970 (2016)

    Article  Google Scholar 

  5. R. Xu, B. Liu, Z. Yan, F. Chen, Low-cost and high-strength powder metallurgy Ti–Al–Mo–Fe alloy and its application. J. Mater. Sci. 54, 12049–12060 (2019)

    Article  CAS  Google Scholar 

  6. X.Q. Yang, H. Tan, N. Lin, Z. Li, Y. He, Effects of the lanthanum content on the microstructure and properties of the molybdenum alloy. Int. J. Refract. Met. Hard Mater. 61, 179–184 (2016)

    Article  CAS  Google Scholar 

  7. B.M. Trost, M. Lautens, Molybdenum catalysts for allylic alkylation. J. Am. Chem. Soc. 104, 5543–5545 (1982)

    Article  CAS  Google Scholar 

  8. L. Dong, J. Wang, L. Wei, C. Li, Z. Jie, Fabrication and thermionic emission properties of lanthanum carbide doped tungsten cathodes. Mater. Lett. 146, 47–50 (2015)

    Article  CAS  Google Scholar 

  9. B.S.L. Prasad, A.R. Annamalai, Tungsten heavy alloys with molybdenum, Y2O3 and lanthanum. A review. J. Superhard. Mater. 41, 1–16 (2019)

    Article  CAS  Google Scholar 

  10. J. Lisboa, J. Marin, M. Barrera, Engineering of fuel plates on uranium–molybdenum monolithic. J. Nucl. Sci. Technol. 5, 274–286 (2015)

    Google Scholar 

  11. R.B. Péréz-Sáez, V. Recarte, Advanced shape memory alloys processed by powder metallurgy. Adv. Eng. Mater. 2, 49–53 (2000)

    Article  Google Scholar 

  12. C.T. Lin, W.R. Peng, P.C. Peng, Simultaneous generation of baseband and radio signals using only one single-electrode Mach–Zehnder modulator with enhanced linearity. IEEE Photonics Technol. Lett. 18, 2481–2483 (2006)

    Article  Google Scholar 

  13. G. Kostorz, Phase Transformations in Materials (Wiley-VCH, Berlin, 2001)

    Book  Google Scholar 

  14. Z.L. Yin, X.H. Li, Q.Y. Chen, Study on the kinetics of the thermal decompositions of ammonium molybdates. Thermochim. Acta 352, 107–110 (2000)

    Google Scholar 

  15. Z.L. Yin, X.H. Li, Study on the thermal decomposition of a commercial polyphase ammonium tetramolybdate. Thermochim. Acta 244, 283–289 (1994)

    Article  CAS  Google Scholar 

  16. J.R. Harris, Negative staining and cryoelectron microscopy. Microsc. Today 5, 18–18 (1997)

    Article  Google Scholar 

  17. R.K. Enneti, T.A. Wolfe, Effect of ammonium dimolybdate (ADM) on the reduction of molybdenum trioxide. Int. J. Refract. Met. Hard Mater. 31, 253–257 (2012)

    Article  CAS  Google Scholar 

  18. Y. Sun, X. Hui, J. Sun, Influence of ammonium molybdate precursor on Mo powder preparation and working properties. Mater. Sci. Eng. A 483, 168–171 (2008)

    Article  Google Scholar 

  19. R.M. German, Sintering: From Empirical Observations to Scientific Principles || Geometric Trajectories During Sintering, Vol. 124 (Butterworth-Heinemann, Oxford, 2014), pp. 141–181

    Book  Google Scholar 

  20. R.K. Enneti, T.A. Wolfe, Agglomeration during reduction of MoO3. Int. J. Refract. Met. Hard Mater. 31, 47–50 (2012)

    Article  CAS  Google Scholar 

  21. T. Ressler, R.E. Jentoft, J. Wienold, In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3. J. Phys. Chem. B 104, 6360–6370 (2000)

    Article  CAS  Google Scholar 

  22. G.B. Basim, B.M. Moudgil, Effect of soft agglomerates on CMP slurry performance. J. Colloids Interface Sci. 256, 137–142 (2002)

    Article  CAS  Google Scholar 

  23. Z.Y. Deng, Y. Zhou, Y. Inagaki, M. Ando, T. Ohji, Role of Zr(OH)4 hard agglomerates in fabricating porous ZrO2 ceramics and the reinforcing mechanisms. Acta Mater. 51, 731–739 (2003)

    Article  CAS  Google Scholar 

  24. R.N. Grass, S. Tsantilis, S.E. Pratsinis, Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates. AIChE J. 52, 1318–1325 (2010)

    Article  Google Scholar 

  25. D.D. Hu, J.B. Zhuang, M.L. Ding, A review of studies on the granular agglomeration mechanisms and anti-agglomeration methods. Key Eng. Mater. 501, 5 (2012)

    Google Scholar 

  26. C.K. Li, P.A. Xiao, X.H. Zhang, Stirring mill of TiH2/SiC powders and sintering of titanium alloy with ultrafine grains. Mater. Sci. Eng. Met. 20, 266–272 (2015)

    Google Scholar 

  27. I. Farahbakhsh, A. Zakeri, P. Manikandan, Evaluation of nanostructured coating layers formed on Ni balls during mechanical alloying of Cu powder. Appl. Surf. Sci. 257, 2830–2837 (2011)

    Article  CAS  Google Scholar 

  28. Q.L. Hou, J.W. Wang, H.T. Duan, Influence of SHMP on ZrO2 coated on the surface of the rutile titanium dioxide. J. Appl. Biomater. Funct. 46, 07096–07099 (2015)

    CAS  Google Scholar 

  29. W.J. Tseng, D.M. Liu, C.K. Hsu, Influence of stearic acid on suspension structure and green microstructure of injection-molded zirconia ceramics. Ceram. Int. 25, 191–195 (1999)

    Article  CAS  Google Scholar 

  30. A.M. Semiletov, A.A. Chirkunov, Y.I. Kuznetsov, Protection of aluminum alloy AD31 from corrosion by adsorption layers of trialkoxysilanes and stearic acid. Mater. Corros. 71, 77–85 (2020)

    Article  CAS  Google Scholar 

  31. X.B. Cao, C. Li, Y. Li, F. Fang, X. Cui, Y. Yao, J. Wei, Enhanced performance of perovskite solar cells by modulating the Lewis acid–base reaction. Nanoscale 10, 1039 (2016)

    Google Scholar 

  32. K. Li, L. Shuai, Z. Jing, Z. Feng, C. Li, Preparation and stabilization of γ-Bi2O3 photocatalyst by adding surfactant and its photocatalytic performance. Mater. Res. Express 4, 6 (2017)

    Google Scholar 

  33. K. Seo, K. Sinha, E. Novitskaya, O.A. Graeve, Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 215, 203–206 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support received from the Start-up Research Fund of Zhengzhou University (No. 32211157) and the China Postdoctoral Science Foundation (No. 2019M652569).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinpeng Zhu or Kaijun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Li, Q., Guo, M. et al. Study of the Agglomeration Behaviour of Surface-Modified Molybdenum Powder. Met. Mater. Int. 27, 4487–4497 (2021). https://doi.org/10.1007/s12540-020-00651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00651-7

Keywords

Navigation