Skip to main content
Log in

Construction of Constitutive Model and Strain-Rate Sensitivity Coefficient Distribution Map of Ti2AlNb

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of Ti–22Al–25Nb was studied by the high temperature compression over a range of temperatures (950–1050 °C) and strain rates (0.001–10 s−1) in this paper. The work-hardening (WH) and softening deformation behaviors of Ti–22Al–25Nb were analyzed. Obvious linear decreasing regimes of WH rate curves can be found before the dynamic recrystallization (DRX) onset, which indicates WH + DRV (dynamic recovery) stage. And WH rate decreased significantly with strain rate reduced and temperature elevated. A physically-based constitutive model was established, which can well predict the flow behavior of Ti–22Al–25Nb. Additional, strain-rate sensitivity coefficient distribution map was established. The higher values of m appeared at the low strain rate. When the strain rate exceeded 0.1 s−1, the values of m were lower than 0.25.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Polozov, V. Sufiiarov, A. Kantyukov, A. Popovich, Intermetallics 112, 106554 (2019)

    Article  CAS  Google Scholar 

  2. Y.R. Zhang, Q. Cai, Z.Q. Ma, C. Li, L.M. Yu, Y.C. Liu, J. Alloys Compd. 28, 3 (2019)

    Google Scholar 

  3. J.P. Yang, Q. Cai, Y.C. Liu, C. Li, Z.Q. Ma, H.J. Li, Metal Mater. Int. 25, 1000–1007 (2019)

    Article  CAS  Google Scholar 

  4. H.S. Ren, X.Y. Ren, H.P. Xiong, W.W. Li, S.J. Pang, A.I. Ustinov, Mater. Charact. 155, 109813 (2019)

    Article  CAS  Google Scholar 

  5. S.B. Wang, W.C. Xu, W.T. Sun, Y.Y. Zong, Y. Chen, D.B. Shan, Metals 9, 9 (2019)

    Google Scholar 

  6. K.M. Xue, Y. Hu, Y.B. Shi, X.H. Ji, G.Q. Gan, P. Li, Rare Metal Mater. Eng. 48, 8 (2019)

    Google Scholar 

  7. J.L. Yang, G.F. Wang, W.C. Zhang, W.Z. Chen, X.Y. Jiao, K.F. Zhang, Mater. Sci. Eng. A 699, 210–216 (2017)

    Article  CAS  Google Scholar 

  8. P.L. Narayana, C.L. Li, J.K. Hong, S.W. Choi, C.H. Park, S.W. Kim, S.E. Kim, N.S. Reddy, J.T. Yeom, Metals Mater. Int. 25, 1063–1071 (2019)

    Article  CAS  Google Scholar 

  9. Y.C. Lin, F.Q. Nong, X.M. Chen, Vacuum 137, 104–114 (2017)

    Article  CAS  Google Scholar 

  10. Y.C. Lin, Y.J. Liang, M.S. Chen, Appl. Phys. A 123, 68 (2017)

    Article  Google Scholar 

  11. Y. Xu, J.S. Liu, Y.X. Jiao, Metals Mater. Int. 25, 823–837 (2019)

    Article  CAS  Google Scholar 

  12. J.B. Jia, C. Lu, Z.G. Yang, W. Sun, Y. Xu, H.L. Liu, Y. Yang, J. Mater. Eng. Perform. 28, 7364–7378 (2019)

    Article  CAS  Google Scholar 

  13. Y.R. Zhang, Q. Cai, Y.C. Liu, Vacuum 165, 199–206 (2019)

    Article  CAS  Google Scholar 

  14. H. Mecking, U.F. Kocks, Acta Metall. 29, 11 (1981)

    Article  Google Scholar 

  15. A.M. Jorge, W. Regone, O. Balancin, J. Mater. Process. Technol. 142, 415–421 (2003)

    Article  CAS  Google Scholar 

  16. C.M. Sellars, W.J. McTegart, Acta Metall. 14, 9 (1966)

    Article  Google Scholar 

  17. J. Zhang, H. Guo, H. Liang, High Temp. Mater. 35, 10 (2016)

    Google Scholar 

  18. C.A. Hernandez, S.F. Medina, J. Ruiz, Acta Mater. 44, 1 (1996)

    Article  Google Scholar 

  19. X. Yang, H. Guo, Z. Yao, S. Yuan, High Temp. Mater. 37 (2018)

  20. Z. Wang, B. Huang, L. Qi, W. Gui, J. Alloys Compd. 708, 328–336 (2017)

    Article  CAS  Google Scholar 

  21. M.S. Chen, W.Q. Yuan, H.B. Li, Z.H. Zou, Mater. Charact. 147, 173–183 (2019)

    Article  CAS  Google Scholar 

  22. D.H. Jang, W.J. Kim, Metals Mater. Int. 24, 455–463 (2018)

    Article  CAS  Google Scholar 

  23. H.Q. Liang, Y. Nan, Y.Q. Ning, H. Li, J.L. Zhang, Z.F. Shi, J. Alloys Compd. 632, 478–485 (2015)

    Article  CAS  Google Scholar 

  24. J. Han, S.H. Kang, S.J. Lee, M. Kawasaki, H.J. Lee, D. Ponge, D. Raabe, Y.K. Lee, Nat. Commun. 8, 1 (2017)

    Article  Google Scholar 

  25. K. Edalati, T. Masuda, M. Arita, M. Furui, X. Sauvage, Z. Horita, R.Z. Valiev, Sci. Rep. 7, 1 (2017)

    Article  CAS  Google Scholar 

  26. R.C. Picu, Acta Mater. 52, 12 (2004)

    Google Scholar 

  27. P. Les, H.P. Stuewe, M. Zehetbauer, Mater Sci. Eng. A 234, 453–455 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant No. 51805442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingli Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xue, X., Zhang, J. et al. Construction of Constitutive Model and Strain-Rate Sensitivity Coefficient Distribution Map of Ti2AlNb. Met. Mater. Int. 27, 1988–1996 (2021). https://doi.org/10.1007/s12540-020-00645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00645-5

Keywords

Navigation