Skip to main content
Log in

Microstructure Evolution Mechanism and Corrosion Behavior of Transient Liquid Phase Bonded 304L Stainless Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Transient liquid phase (TLP) bonding of 304L austenitic stainless steel was carried out using MBF-20 interlayer at 1070 °C with different holding times. The effect of bonding time on the microstructure and corrosion resistance of the TLP bonded samples was investigated aiming to obtain the optimal bonding time. The results showed that isothermal solidification was completed within 45 min at 1070 °C and shorter holding times gave rise to the formation of intermetallic compounds at the joint centerline. It was found that the solidification sequence in the joint region is as follows: (1) isothermal solidification of γ solid solution, (2) formation of ternary eutectic of γ + Ni boride + Cr boride, and (3) formation of ternary eutectic of γ + Ni boride + Ni–Si–B compound in the athermally solidified zone. Final stage of the phase formation at the joint centerline was the precipitation of Ni3Si particles in the vicinity of eutectic microconstituents via a solid state transformation. Extensive Cr-rich borides were formed in the diffusion affected zone as a result of B diffusion into the base metal during bonding process. Corrosion behavior of the TLP bonded samples was studied in 3.5% NaCl solution. The joint corrosion resistance was improved with the increase of the bonding time to 30 min and then decreased when the holding time was prolonged.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.F. Mcguire, Stainless Steel for Design Engineers (The Materials Information Society, Material Park, 2008)

    Book  Google Scholar 

  2. J. Hilkes, K. Bekkers, Welding duplex stainless steel. Weld. J. 74(11), 51–54 (1995)

    CAS  Google Scholar 

  3. R. Jamshidi Lamjiri, A. Ekrami, Transient liquid diffusion bonding of AISI304 stainless steel with a nickel base interlayer. Defect. Diffus. Forum 380, 48–54 (2017)

    Article  Google Scholar 

  4. G.O. Cook, C.D. Sorensen, Overview of transient liquid phase and partial transient liquid phase bonding. J. Mater. Sci. 46, 5305–5323 (2011)

    Article  CAS  Google Scholar 

  5. D. Duvall, W.A. Owczarski, D.F. Paulonis, TLP boding: a new method for joining heat resistant alloys. Weld J. 53, 203–214 (1974)

    CAS  Google Scholar 

  6. C.W. Sinclair, Modeling transient liquid phase bonding in multicomponent systems. J. Phase Equilib. 20, 361–369 (1999)

    Article  CAS  Google Scholar 

  7. W.F. Gale, D.A. Butts, Transient liquid phase bonding. Sci. Technol. Weld. J. 9(4), 283–300 (2004)

    Article  CAS  Google Scholar 

  8. A. Fazaeli, A. Ekrami, A.H. Kokabi, Microstructure and mechanical properties of dual phase steels, with different martensite morphology, produced during TLP bonding of a low C–Mn steel. Met. Mater. Int. 22(5), 856–862 (2016)

    Article  Google Scholar 

  9. B. Binesh, A. Jazayeri Gharehbagh, Transient liquid phase bonding of IN738LC/MBF-15/IN738LC: solidification behavior and mechanical properties. J. Mater. Sci. Technol. 32, 1137–1151 (2016)

    Article  CAS  Google Scholar 

  10. S. Roh, Ch. Lee, Formation of secondary phases and their effect on the mechanical properties of joints formed by TLP bonding using Fe–B–Si insert metal in duplex stainless steel. Met. Mater. Int. 25(2), 425–438 (2019)

    Article  CAS  Google Scholar 

  11. E. Norouzi, M. Atapour, M. Shamanian, A. Allafchian, Effect of bonding temperature on the microstructure and mechanical properties of Ti–6Al–4V to AISI 304 transient liquid phase bonded joint. Mater. Des. 99, 543–551 (2016)

    Article  CAS  Google Scholar 

  12. O.A. Idowu, N.L. Richards, M.C. Chaturvedi, Effect of bonding temperature on isothermal solidification rate during transient liquid phase bonding of Inconel 738LC superalloy. Mater. Sci. Eng. A 397, 98–112 (2005)

    Article  Google Scholar 

  13. W. Jiang, J. Gong, S.T. Tu, A new cooling method for vacuum brazing of a stainless steel plate-fin structure. Mater. Des. 31, 648–653 (2010)

    Article  CAS  Google Scholar 

  14. R. Abdolvand, M. Atapour, M. Shamaniana, A. Allafchian, The effect of bonding time on the microstructure and mechanical properties of transient liquid phase bonding between SAF 2507 and AISI 304. J. Manuf. Process. 25, 172–180 (2017)

    Article  Google Scholar 

  15. M. Jafari, M. Rafiei, H. Mostaan, Effect of solidification mode on microstructure and mechanical properties of AISI420 steel to SAF2507 steel dissimilar joint produced by transient liquid phase. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00406-z

    Article  Google Scholar 

  16. C.L. Ou, D.W. Liaw, Y.C. Du, R.K. Shiue, Brazing of 422 stainless steel using the AWS classification BNi-2 braze alloy. J. Mater. Sci. 41, 6353–6361 (2006)

    Article  CAS  Google Scholar 

  17. M. Mohammadi, A. Ekrami, Microstructure and mechanical properties of pure Cu interlayer TLP joints of 304 stainless steel to dual phase steel. J. Mater. Process. Technol. 275, 116276 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116276

    Article  CAS  Google Scholar 

  18. M. Sadeghian, A. Ekrami, R. Jamshidi, Transient liquid phase bonding of 304 stainless steel using a Co-based interlayer. Sci. Technol. Weld. J. 22(8), 666–672 (2017)

    Article  CAS  Google Scholar 

  19. M. MazarAtabaki, J. Noor Wati, J. Idris, transient liquid phase diffusion brazing of stainless steel 304. Weld. J. 92, 57–63 (2013)

    Google Scholar 

  20. Standard ASTM G59–97, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. Annual Book of ASTM Standards (2009), pp. 237–239

  21. T.B. Massalski (ed.), Binary Alloy Phase Diagrams (ACM, Metals Park, 1986)

    Google Scholar 

  22. E.E. Stansbury, R.A. Buchanan, Fundamentals of Electrochemical Corrosion (ASM Internationals, Materials Park, 2000)

    Book  Google Scholar 

  23. J.C. Lippold, S.D. Kiser, J.N. DuPont, Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, Singapore, 2009)

    Google Scholar 

  24. J.F. Shackelford, W. Alexander, Materials Science and Engineering Handbook, 3rd edn. (CRC Press, Boca Raton, 2001)

    Google Scholar 

  25. M. Pouranvari, A. Ekrami, A.H. Kokabi, Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni–Si–B ternary filler alloy. J. Alloys Compd. 563, 143–149 (2013)

    Article  CAS  Google Scholar 

  26. ASM Handbook, Alloy Phase Diagrams, Vol. 3 (ASM International, USA, 1992)

  27. A. Kazazi, A. Ekrami, Corrosion behavior of TLP bonded stainless steel 304 with Ni-based interlayer. J. Manuf. Process. 42, 131–138 (2019)

    Article  Google Scholar 

  28. T. Tokunaga, K. Nishio, M. Hasebe, Thermodynamic study of phase equilibria in the Ni–Si–B system. J. Phase Equilib. 22, 291–299 (2001)

    Article  CAS  Google Scholar 

  29. W. Jiang, J. Gong, S.T. Tu, Effect of brazing temperature on tensile strength and microstructure for a stainless steel plate-fin structure. Mater. Des. 32, 736–742 (2011)

    Article  CAS  Google Scholar 

  30. W.D. MacDonald, T.W. Eagar, Isothermal solidification kinetics of diffusion brazing. Metall. Mater. Trans. A 29, 315–325 (1998)

    Article  Google Scholar 

  31. K. Oikawa, R. Saito, K. Kobayashi, J. Yaokawa, K. Anzai, Phase equilibria in Ni-rich portion of Ni–Si system. Mater. Trans. 48(9), 2259–2262 (2007)

    Article  CAS  Google Scholar 

  32. A. Ghasemi, M. Pouranvari, Microstructural evolution mechanism during brazing of Hastelloy X superalloy using Ni–Si–B filler metal. Sci. Technol. Weld. J. 23(5), 441–448 (2018)

    Article  CAS  Google Scholar 

  33. E. Medvedovski, F.A. Chinski, J. Stewart, Wear- and corrosion-resistant boride-based coatings obtained through thermal diffusion CVD processing. Adv. Eng. Mater. 16(6), 713–728 (2014)

    Article  CAS  Google Scholar 

  34. W. Batz, H.W. Mead, C.E. Birchenall, Diffusion of silicon in iron. J. Met. 4(10), 1070 (1952)

    CAS  Google Scholar 

  35. X. Zhang, X. Li, P. Wu, S. Chen, Sh. Zhang, N. Chen, X. Huai, First principles calculation of boron diffusion in fcc-Fe. Curr. Appl. Phys. 18, 1108–1112 (2018)

    Article  Google Scholar 

  36. C.W. Sinclair, G.R. Purdy, J.E. Morral, Transient liquid-phase bonding in two-phase ternary systems. Metall. Mater. Trans. A 31(4), 1187–1192 (2000)

    Article  Google Scholar 

  37. ASTM A 887, Standard Specification for Borated Stainless Steel Plate, Sheet, and Strip for Nuclear Application (ASTM International, 2004)

  38. M. Pouranvari, A. Ekrami, A.H. Kokabi, Microstructure development during transient liquid phase bonding of GTD-111 nickel-based superalloy. J. Alloys Compd. 461(1), 641–647 (2008)

    Article  CAS  Google Scholar 

  39. B. Shahabi Kargar, M.H. Moayed, A. Babakhani, A. Davoodi, Improving the corrosion behaviour of powder metallurgical 316L alloy by prepassivation in 20% nitric acid. Corros. Sci. 53(1), 135–146 (2011)

    Article  Google Scholar 

  40. J.A. Verduzco, V.H. Verduzco, L. Dzib-Pérez, J. González-Sánchez, V.H. López, J. Solís, Corrosion resistance of bonding zone of AISI 316L–304 stainless steels joined with iron based glass ribbon interlayer: microstructural effects. Corros. Eng. Sci. Technol. 47(3), 233–240 (2012)

    Article  CAS  Google Scholar 

  41. X. Zhou, Y. Dong, Ch. Liu, Y. Liu, L. Yu, J. Chen, H. Li, J. Yang, Transient liquid phase bonding of CLAM/CLAM steels with Ni-based amorphous foil as the interlayer. Mater. Des. 88, 1321–1325 (2015)

    Article  CAS  Google Scholar 

  42. S. Borde`re, E. Feuillet, J.-L. Diot, R. De Langlade, J.-F. Silvain, Understanding of void formation in Cu/Sn–Sn/Cu system during transient liquid phase bonding process through diffusion modeling. Metall. Mater. Trans. B 49, 3343–3356 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Binesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, S., Binesh, B. Microstructure Evolution Mechanism and Corrosion Behavior of Transient Liquid Phase Bonded 304L Stainless Steel. Met. Mater. Int. 27, 3417–3431 (2021). https://doi.org/10.1007/s12540-020-00671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00671-3

Keywords

Navigation