Skip to main content
Log in

Effect of an alkali hydroxide concentration on the structural, optical, and surface morphological properties of ZnO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A comprehensive study aimed to investigate the role of sodium hydroxide precursor concentration on the physical properties of the ZnO nanoparticles. A simple wet chemical approach was employed to synthesize ZnO nanoparticles by keeping the Zn precursor concentration constant and sodium hydroxide concentration varied. XRD analysis confirms the prepared ZnO nanoparticles having a hexagonal wurtzite phase whose crystallite sizes are from 24 to 34 nm. Good crystalline ZnO nanoparticles are realized when the Zn-to-OH precursor concentration is greater than 1:1 molar ratio. UV–Vis spectroscopic studies reveal the optical bandgap of the ZnO nanoparticles can be tailored considerably by varying the alkali hydroxide concentration. The variation in Urbach energy values emphasizes the existence of localized states originating from the lattice disorder and defects. The room temperature photoluminescence analysis confirms the presence of defects in the prepared nanoparticles. Surface morphological investigation of the synthesized nanoparticle samples was investigated using SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Rahman, Zinc oxide light-emitting diodes: a review. Opt. Eng. 58, 1 (2019). https://doi.org/10.1117/1.oe.58.1.010901

    Article  Google Scholar 

  2. S.S. Shin, S.J. Lee, S.I. Seok, Exploring wide bandgap metal oxides for perovskite solar cells. APL Mater. 7, 022401 (2019). https://doi.org/10.1063/1.5055607

    Article  ADS  Google Scholar 

  3. O.B. Ajayi, M.S. Akanni, J.N. Lambi, C. Jeynes, J.F. Watts, Compositional studies of various metal oxide coatings on glass. Thin Solid Films 185, 123–136 (1990). https://doi.org/10.1016/0040-6090(90)90012-3

    Article  ADS  Google Scholar 

  4. J.C. Védrine, Heterogeneous catalysis on metal oxides. Catalysts 7, 341 (2017)

    Article  Google Scholar 

  5. R. Mallampati, S. Valiyaveettil, Biomimetic metal oxides for the extraction of nanoparticles from water. Nanoscale 5, 3395–3399 (2013). https://doi.org/10.1039/c3nr34221b

    Article  ADS  Google Scholar 

  6. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)

    Article  Google Scholar 

  7. N. Chidhambaram, K. Ravichandran, Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity. Mater. Res. Express 4, 075037 (2017). https://doi.org/10.1088/2053-1591/aa7abd

    Article  ADS  Google Scholar 

  8. P.A. Rodnyi, I.V. Khodyuk, Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. (English Transl) Opt. Spektrosk. 111, 776–785 (2011). https://doi.org/10.1134/s0030400x11120216

    Article  ADS  Google Scholar 

  9. N. Chidhambaram, Augmented antibacterial efficacies of the aluminium doped ZnO nanoparticles against four pathogenic bacteria. Mater. Res. Express 6, 075061 (2019). https://doi.org/10.1088/2053-1591/ab1804

    Article  ADS  Google Scholar 

  10. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol–gel method synthesis of ZnO nanostructures using sol–gel method. Procedia Chem. 19, 211–216 (2016). https://doi.org/10.1016/j.proche.2016.03.095

    Article  Google Scholar 

  11. J. Li, Z. Wu, Y. Bao, Y. Chen, C. Huang, N. Li, S. He, Z. Chen, Wet chemical synthesis of ZnO nanocoating on the surface of bamboo timber with improved mould-resistance. J. Saudi Chem. Soc. 21, 920–928 (2017). https://doi.org/10.1016/j.jscs.2015.12.008

    Article  Google Scholar 

  12. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 4, 2–6 (2014). https://doi.org/10.1186/2228-5326-3-30

    Article  Google Scholar 

  13. H.S.M. Abd-Rabboh, M. Eissa, S.K. Mohamed, M.S. Hamdy, Synthesis of ZnO by thermal decomposition of different precursors: photocatalytic performance under UV and visible light illumination. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab04ff

    Article  Google Scholar 

  14. S.T. Navale, V.V. Jadhav, K.K. Tehare, R.U.R. Sagar, C.S. Biswas, M. Galluzzi, W. Liang, V.B. Patil, R.S. Mane, F.J. Stadler, Solid-state synthesis strategy of ZnO nanoparticles for the rapid detection of hazardous Cl2. Sens. Actuat. B Chem. 238, 1102–1110 (2017). https://doi.org/10.1016/j.snb.2016.07.136

    Article  Google Scholar 

  15. D.B. Bharti, A.V. Bharati, Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity. Luminescence 32, 317–320 (2017). https://doi.org/10.1002/bio.3180

    Article  Google Scholar 

  16. P. Rai, W.K. Kwak, Y.T. Yu, Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties. ACS Appl. Mater. Interfaces 5, 3026–3032 (2013). https://doi.org/10.1021/am302811h

    Article  Google Scholar 

  17. K. Ravichandran, N. Chidhambaram, S. Gobalakrishnan, Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. J. Phys. Chem. Solids 93, 82–90 (2016). https://doi.org/10.1016/j.jpcs.2016.02.013

    Article  ADS  Google Scholar 

  18. S.V. Elangovan, V. Chandramohan, N. Sivakumar, T.S. Senthil, Synthesis and characterization of ZnO nanoparticles at different molarity concentrations for photocatalytic applications. Desalin. Water Treat. 57, 9671–9678 (2016). https://doi.org/10.1080/19443994.2015.1035340

    Article  Google Scholar 

  19. A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 8, 1–10 (2013). https://doi.org/10.1186/1556-276X-8-516

    Article  Google Scholar 

  20. B. Choudhury, M. Dey, A. Choudhury, Defect generation, d–d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 3, 25 (2013). https://doi.org/10.1186/2228-5326-3-25

    Article  Google Scholar 

  21. O.R. Vasile, E. Andronescu, C. Ghitulica, B.S. Vasile, O. Oprea, E. Vasile, R. Trusca, Synthesis and characterization of nanostructured zinc oxide particles synthesized by the pyrosol method. J. Nanopart. Res. 14, 1–13 (2012). https://doi.org/10.1007/s11051-012-1269-7

    Article  Google Scholar 

  22. J.H. Lin, R.A. Patil, R.S. Devan, Z.A. Liu, Y.P. Wang, C.H. Ho, Y. Liou, Y.R. Ma, Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres. Sci. Rep. 4, 1–8 (2014). https://doi.org/10.1038/srep06967

    Article  Google Scholar 

  23. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010). https://doi.org/10.1002/adfm.200901884

    Article  Google Scholar 

  24. L. Dai, X.L. Chen, W.J. Wang, T. Zhou, B.Q. Hu, Growth and luminescence characterization of large-scale zinc oxide nanowires. J. Phys. Condens. Matter 15, 2221–2226 (2003). https://doi.org/10.1088/0953-8984/15/13/308

    Article  ADS  Google Scholar 

  25. N.H. Alvi, K. ul Hasan, O. Nur, M. Willander, The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett. 6, 1–7 (2011). https://doi.org/10.1186/1556-276X-6-130

    Article  Google Scholar 

  26. U.S.U. Thampy, C.R. Krishna, C.V. Reddy, B. Babu, Y.P. Reddy, P.S. Rao, R.V.S.S.N. Ravikumar, Spectral investigations on Cu2+-doped ZnO nanopowders. Appl. Magn. Reson. 41, 69–78 (2011). https://doi.org/10.1007/s00723-011-0234-4

    Article  Google Scholar 

  27. M. Vafaee, M.S. Ghamsari, Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater. Lett. 61, 3265–3268 (2007). https://doi.org/10.1016/j.matlet.2006.11.089

    Article  Google Scholar 

  28. S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, A.K. Ghosh, Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations. RSC Adv. 4, 62123–62131 (2014). https://doi.org/10.1039/c4ra09937k

    Article  Google Scholar 

  29. K. Ravichandran, N. Chidhambaram, T. Arun, S. Velmathi, S. Gobalakrishnan, Realizing cost-effective ZnO:Sr nanoparticles@graphene nanospreads for improved photocatalytic and antibacterial activities. RSC Adv. 6, 67575–67585 (2016). https://doi.org/10.1039/C6RA08697G

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chidhambaram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilavazhagan, S., Anbuselvan, D., Santhanam, A. et al. Effect of an alkali hydroxide concentration on the structural, optical, and surface morphological properties of ZnO nanoparticles. Appl. Phys. A 126, 279 (2020). https://doi.org/10.1007/s00339-020-3462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3462-3

Keywords

Navigation