Skip to main content
Log in

Impact of calcination temperature on structural, optical, and magnetic properties of spinel CuFe2O4 for enhancing photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Variation in temperature during synthesis is a favorite aspect to get enhanced structural, optical, magnetic, and catalytic properties. Here, in this work, Spinel (CuFe2O4) ferrites were formulated with various calcination temperatures. The method used is a simple, economical, and eco-friendly microwave combustion method. Impact of annealing temperature on structural analysis is confirmed by XRD analysis. Under the following parameters, the structural changes are discussed: diametrical size, lattice parameter, strain, tetrahedral and octahedral hopping length, and bond length, respectively. HR-TEM results assure the spherical-shaped morphology. The average diametrical size calculated is in good agreement with the XRD results. The EDAX spectrum confirms the composition of sample and its purity. A FT-IR study exemplifies the ferrite characteristic peaks available as synthesized sample. The UV–Vis analysis and Tauc’s plot of the samples give us the optical bandgaps as 2.2, 2.1, and 2.08 eV, respectively. An increase in calcination temperature exhibits an enhancement in saturation magnetization (Ms), remnant magnetization (Mr), and coercivity (Hc) at room temperature. Degradation activity of methylene blue (MB) studied by catalyst CuF-MW, CuF-500, and CuF-600 expresses the degradation efficiency of the catalyst. CuF-MW exhibits an excellent result than other samples, due to large surface area and the small diametrical size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N.R. Dhineshbabu, R. Vettumperumal, A. Narendrakumar, M. Manimala, R.K. Rajesh, Adv. Sci. Eng. Med. 9(5), 377–383(7) (2017)

    CAS  Google Scholar 

  2. Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 134(24), 10182–10190 (2012)

    CAS  Google Scholar 

  3. C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Phys. Chem. B 104(6), 1141–2114 (2000)

    CAS  Google Scholar 

  4. Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 126(19), 6164–6168 (2004)

    CAS  Google Scholar 

  5. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, J. Magn. Magn. Mater. 321(14), 2035–2047 (2009)

    CAS  Google Scholar 

  6. D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113(20), 8606–8615 (2009)

    CAS  Google Scholar 

  7. M.A. Willard, Y. Nakamura, D.E. Laughlin, M.E. McHenry, J. Am. Ceram. Soc. 82(12), 3342–3346 (1999)

    CAS  Google Scholar 

  8. M.A. Laguna-Bercero, M.L. Sanjuán, R.I. Merino, J. Phys. 19, 18 (2007)

    Google Scholar 

  9. A. Sutka, G. Mezinskis, Front. Mater. Sci. 6(2), 128–141 (2012)

    Google Scholar 

  10. J.G.M.S. Machado, F.A. Brehm, C.A.M. Moraes, C.A. dosSantos, A.C.F. Vilela, J.B.M. daCunha, J. Hazard. Mater. 136(3), 953–960 (2006)

    CAS  Google Scholar 

  11. S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, V. Huch, S. Hüfner, R. Haberkorn, H.P. Beck, M. Jilavi, J. Am. Soc. 84(9), 1921–1928 (2001)

    CAS  Google Scholar 

  12. B.Z. Tang, Y. Geng, J.W.Y. Lam, B. Li, Chem. Mater. 11(6), 1581–1589 (1999)

    CAS  Google Scholar 

  13. J.Z. Jiang, G.F. Goya, H.R. Rechenberg, J. Phys. 11, 20 (1999)

    Google Scholar 

  14. T. Zaki, D. Saed, D. Aman, S.A. Younis, Y.M. Moustafa, J. Sol-Gel Sci. Technol. 65(2), 269–276 (2013)

    CAS  Google Scholar 

  15. E. Solano, L. Perez-Mirabet, F. Martinez-Julian, R. Guzmán, J. Arbiol, T. Puig, X. Obradors, R. Yañez, A. Pomar, S. Ricart, J. Nanopart. Res. 14, 1034 (2012)

    Google Scholar 

  16. V.A.F. Samson, K.M. Racik, S. Prathap, Mater. Today Proc. 8(1), 386–392 (2019)

    Google Scholar 

  17. S. Vanetsev, V.K. Ivanov, Y.D. Doklady, Chemistry 387(4–6), 332–334 (2002)

    CAS  Google Scholar 

  18. B.S.P.A. Kumar, K.H.V. Reddy, B. Madhav, K. Ramesh, Y.V.D. Nageswar, Tetrahedron Lett. 53(34), 4595–4599 (2012)

    Google Scholar 

  19. M. Akbar, Z. Mojgan, Lett. Org. Chem. 11(2), 152–157(6) (2014)

    Google Scholar 

  20. P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Curr. Appl. Phys. 11(1), 101–108 (2011)

    Google Scholar 

  21. R.C. Sripriya, A.F. Samson, V.S. Anand, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9540-z

    Article  Google Scholar 

  22. S.S. Selima, M. Khairy, M.A. Mousa, Ceram. Int. 45(5), 6535–6540 (2019)

    CAS  Google Scholar 

  23. P. Amaliya, S. Anand, S. Pauline, J. Magn. Magn. Mater. 467, 14–28 (2018)

    CAS  Google Scholar 

  24. A. Kumar, A. Singh, M.S. Yadav, M. Arora, R.P. Pant, Thin Solid Films 519, 1056 (2010)

    CAS  Google Scholar 

  25. H.W. Wang, S.C. Kung, J. Magn. Magn. Mater. 270, 230 (2004)

    CAS  Google Scholar 

  26. S. Zahi, M. Hashim, A.R. Daud, J. Magn. Magn. Mater. 308, 177 (2007)

    CAS  Google Scholar 

  27. M.R. Uddin, M.R. Khan, M.W. Rahman, A. Yousuf, C.K. Cheng, React. Kinet. Mech. Catal. 116(2), 589–604 (2015)

    CAS  Google Scholar 

  28. C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, RSC Adv. 3(37), 16728–16738 (2013)

    CAS  Google Scholar 

  29. P.B. Pandya, H.H. Joshi, R.G. Kulkarni, J. Mater. Sci. Lett. 10(8), 474–476 (1991)

    CAS  Google Scholar 

  30. M. Estrella, L. Barrio, G. Zhou, X. Wang, Q. Wang, W. Wen, J.C. Hanson, A.I. Frenkel, J.A. Rodriguez, J. Phys. Chem. C 113(32), 14411–14417 (2009)

    CAS  Google Scholar 

  31. G.F. Goya, H.R. Rechenberg, Nanostructured Mater. 10(6), 1001–1011 (1998)

    CAS  Google Scholar 

  32. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, M.S. Toprak, J. Magn. Magn. Mater. 322, 866 (2010)

    CAS  Google Scholar 

  33. M.M. Kothawale, R.B. Tangsali, G.K. Naik, J.S. Budkuley, J. Supercond. Nov. Magn. 25, 1907 (2012)

    CAS  Google Scholar 

  34. Md Amir, M. Geleri, S. Guner, A. Baykal, H. Sozeri, J. Inorg. Organomet. Polym. 25, 1111 (2015)

    CAS  Google Scholar 

  35. Md Amir, A. Baykal, S. Guner, M. Sertkol, H. Sozeri, M. Toprak, J. Inorg. Organomet. Polym. 25, 747 (2015)

    CAS  Google Scholar 

  36. A. Baykal, H. Deligoz, H. Sozeri, Z. Durmus, M.S. Toprak, J. Supercond. Nov. Magn. 25, 1879 (2012)

    CAS  Google Scholar 

  37. Md Amir, M. Sertkol, A. Baykal, H. Sozeri, J. Supercond. Nov. Magn. 28, 2447 (2015)

    CAS  Google Scholar 

  38. Md Amir, A. Baykal, M. Sertkol, H. Sözeri, J. Inorg. Organomet. Polym. Mater. 25(4), 619–626 (2015)

    CAS  Google Scholar 

  39. S. Rana, R.S. Srivastava, M.M. Sorensson, R.D.K. Misra, Mater. Sci. Eng. B 119(2), 144–151 (2005)

    Google Scholar 

  40. Y. Fu, H. Chen, X. Sun, X. Wang 111–112, 280–287 (2012)

    Google Scholar 

  41. S. Rana, J. Rawat, R.D.K. Misra, Acta Biomater. 1(6), 691–703 (2005)

    CAS  Google Scholar 

  42. B. Baruwati, D. Guin, S.V. Manorama, Org. Lett. 9(26), 5377–5380 (2007)

    CAS  Google Scholar 

  43. Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, X. Wang, Ind. Eng. Chem. Res. 51(36), 11700–11709 (2012)

    CAS  Google Scholar 

  44. T. Peng, X. Zhang, H. Lv, L. Zan, Catal. Commun. 28, 116–119 (2012)

    CAS  Google Scholar 

  45. P. Xiong, J. Zhu, X. Wang, Ind. Eng. Chem. Res. 52(48), 17126–17133 (2013)

    CAS  Google Scholar 

  46. C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Appl. Surf. Sci. 453, 288–296 (2018)

    CAS  Google Scholar 

  47. C. Wei, Q. Ru, X. Kang, H. Hou, C. Cheng, D. Zhang, Appl. Surf. Sci. 435, 993–1001 (2018)

    CAS  Google Scholar 

  48. P. Jing, J. Li, L. Pan, J. Wang, J. Hazard. Mater. 284, 163–170 (2015)

    CAS  Google Scholar 

  49. C. Wei, R. Zhang, X. Zheng, Q. Chen, C. Cui, G. Li, D. Zhang, Inorg. Chem. Front. 5, 3126–3134 (2018)

    CAS  Google Scholar 

  50. C. Wei, Q. Chen, C. Cheng, R. Liu, Q. Zhang, L. Zhang, Inorg. Chem. Front. 6, 1851–1860 (2019)

    CAS  Google Scholar 

  51. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Int. J. Mol. Sci. 14(11), 21266–21305 (2013)

    CAS  Google Scholar 

  52. V. Manikandan, A. Vanitha, E.R. Kumar, J. Chandrasekaran, J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.02.030MAGMA62490

    Article  Google Scholar 

  53. M.N. Akhtar, A. Bakar Sulong, M.A. Khan, M. Ahmad, G. Murtaza, M.R. Raza, R. Raza, M. Saleem, M. Kashif, J. Magn. Magn. Mater. 401, 425–431 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prathap.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samson, V.A.F., Bernadsha, S.B., Mahendiran, M. et al. Impact of calcination temperature on structural, optical, and magnetic properties of spinel CuFe2O4 for enhancing photocatalytic activity. J Mater Sci: Mater Electron 31, 6574–6585 (2020). https://doi.org/10.1007/s10854-020-03213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03213-0

Navigation