Skip to main content
Log in

Effect of growth and electrical properties of TiOx films on microbolometer design

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents the feasibility of non-stoichiometric TiOx thin films as an active material for bolometer application. The TiOx films have been deposited on glass substrate by DC sputtering with oxygen flow rate of 0.1–0.7 sccm at room temperature and their electrical properties have been studied. The TiOx films were found to be amorphous with dense and smooth surface morphology. The thickness of the films was found to decrease from 150 to 30 nm with an increase in oxygen flow rate. The TiOx film corresponding to 0.7 sccm showed maximum temperature coefficient of resistivity of 0.72%/°C. Performance of TiOx-based bolometer pixel (pitch: 56 μm) is simulated using the electrical characteristics of the deposited films. The TiOx film corresponding to the 0.7 sccm O2 flow rate displayed thermal conductance of 2.95 × 10–7 W/K along with a maximum Figure of Merit of 2.45 × 106 and a time constant of 8.2 ms. The Noise equivalent temperature difference of the bolometer structure is estimated (~ 107 mK).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.L. Tissot, Infrared Phys. Tech. 46, 147–153 (2004)

    Article  Google Scholar 

  2. J.L. Tissot, C. Trouilleau, A. Crastes, O. Legras, Infrared Phys. Tech. 49, 187–191 (2007)

    Article  Google Scholar 

  3. M. Vollmer, K.P. Mollmann, Infrared Thermal Imaging, Fundamentals, Research and Applications, 2nd edn. (Wiley VCH, Verlag GmbH & Co, KGaA, Weinheim, 2017)

    Book  Google Scholar 

  4. I.P. Rogalski, Infrared Phys. Tech. 54, 136–154 (2011)

    Article  Google Scholar 

  5. O. Rogalski, Optoelec. Rev. 20, 279–308 (2012)

    Google Scholar 

  6. Y. Tsujino, Infrared Phys. Tech. 53, 50–60 (2010)

    Article  CAS  Google Scholar 

  7. A. Tanaka, S. Matsumoto, N. Tsukamoto, S. Itoh, K. Chiba, T. Endoh, A. Nakazato, K. Okuyama, Y. Kumazawa, M. Hijikawa, H. Gotoh, T. Tanaka, N. Teranishi, IEEE Trans. Electron. Dev. 43, 1844–1850 (1996)

    Article  CAS  Google Scholar 

  8. R.S. Saxena, R.K. Bhan, C.R. Jalwania, K. Khurana, IEEE Sens. 8, 1801–1804 (2008)

    Article  CAS  Google Scholar 

  9. R.S. Saxena, R.K. Bhan, C.R. Jalwania, P.S. Rana, S.K. Lomash, Sens. Actuator A 141, 359–366 (2008)

    Article  CAS  Google Scholar 

  10. R.A. Wood, Uncooled infrared imaging systems, in Semicond. and Semimetals, ch. 3, vol. 47, ed. by D.D. Skatrud, P.W. Kruse (Academic Press, San Diego, 1997)

    Google Scholar 

  11. N. Fieldhouse, S.M. Pursel, M.W. Horn, S.S.N. Bharadwaja, J. Phys. D 42, 055408 (2009)

    Article  Google Scholar 

  12. V. Leonov, N. Perova, P.D. Moor, B.D. Bois, C. Goessens, B. Grietens, A. Verbist, C.A.V. Hoof, and J.P. Vermeiren, Proc. SPIE (2003). https://doi.org/10.1117/12.468410

    Article  Google Scholar 

  13. P.D. Raj, S. Gupta, M. Sridharan, J. Mater. Sci. 27, 7494–7500 (2016)

    Google Scholar 

  14. B. Wang, J. Lai, H. Li, H. Hu, S. Chen, Infrared Phys. Tech. 57, 8–13 (2013)

    Article  CAS  Google Scholar 

  15. M.F. Zia, M.A. Rahman, M. Alduraibi, B. Ilahi, E. Awad, S. Majzoub, J. Electron. Mater. 46, 5978–5985 (2017)

    Article  CAS  Google Scholar 

  16. M. Soltani, S.T. Bah, R. Karmouch, M. Gaidi, R. Vallée, J. Mater. Sci. 30, 20043–20049 (2019)

    CAS  Google Scholar 

  17. VYu Zerov, Y.V. Kulikov, V.G. Malyarov, I.A. Khrebtov, I.I. Shaganov, E.B. Shadri, Tech. Phys. Lett. 27, 378–380 (2001)

    Article  CAS  Google Scholar 

  18. W. Zhou, X.F. Xu, C. Ouyang, J. Wu, Y.Q. Gao, Z. Huang, J. Mater. Sci. 25, 1959–1964 (2014)

    CAS  Google Scholar 

  19. S. Vadnala, P. Pal, S. Asthana, J. Mater. Sci. 27, 6156–6165 (2016)

    CAS  Google Scholar 

  20. F. Niklaus, C. Vieder, H.H. Jakobsen, Proc. SPIE 6836, 68360D (2008)

    Article  Google Scholar 

  21. S. Gupta, A. Katiyar, R.K. Bhan, R. Muralidharan, Def. Sci. J. 63, 581–588 (2013)

    Article  CAS  Google Scholar 

  22. C. Shin, D. Pham, J. Park, S. Kim, Y.J.J. LeeYi, Infrared Phys. Tech. 96, 84–88 (2019)

    Article  CAS  Google Scholar 

  23. D.S. Kim, I.W. Kwon, Y.S. Lee, H.C. Lee, Infrared Phys. Tech. 54, 10–12 (2011)

    Article  CAS  Google Scholar 

  24. M.L. Hai, Q. Cheng, M. Hesan, C. Qu, E.C. Kinzel, M. Almasri, Infrared Phys. Tech. 95, 227–235 (2018)

    Article  Google Scholar 

  25. Y.E. Kesim, E. Battal, M.Y. Tanrikulu, A.K. Okyay, Infrared Phys. Tech. 67, 245–249 (2014)

    Article  CAS  Google Scholar 

  26. J.E. Sanchez, G. González, G.V. Reveles, J.J.V. Salazar, L.B. Diaz, J.M.G. Hernández, M.J. Yacaman, A. Ponce, F.J. González, Infrared Phys. Tech. 81, 266–270 (2017)

    Article  CAS  Google Scholar 

  27. A. Pazidis, R.R. Koch, Thin Solid Films 649, 43–50 (2018)

    Article  CAS  Google Scholar 

  28. Y. Ju, M. Wang, Y. Wang, S. Wang, C. Fu, Adv. Cond. Matter Phys. 2013, 365475 (2013)

    Google Scholar 

  29. M. Bibes, J.E. Villegas, A. Barthelemy, Adv. Phys. 60, 5–84 (2011)

    Article  CAS  Google Scholar 

  30. S. Dutta, A. Pandey, K.K. Jain, J. Alloy Compds. 696, 376–381 (2017)

    Article  CAS  Google Scholar 

  31. S. Dutta, A. Pandey, O.P. Thakur, R. Pal, J. Vac. Sci. Tech. A 33, 021507 (2015)

    Article  Google Scholar 

  32. Y. Huang, G. Pandraud, P.M. Sarro, J. Vaccum Sci. Technol. A 31, 01A148 (2013)

    Article  Google Scholar 

  33. S. Dutta, R. Pal, R. Chatterjee, Mater. Res. Exp. 2, 046404 (2015)

    Article  Google Scholar 

  34. A.L. Lin, U.S. Patent 7442933 (2008)

  35. Y.A.K. Reddy, I.K. Kang, Y.B. Shin, H.C. Lee, P.S. Reddy, Mater. Sci. Semicond. Proc. 32, 107–116 (2015)

    Article  CAS  Google Scholar 

  36. Y.A.K. Reddy, I.K. Kang, Y.B. Shin, H.C. Lee, J. Appl. Phys. D 48, 355104 (2015)

    Article  Google Scholar 

  37. Y.B. Shinn, Y.A.K. Reddy, I.K. Kang, H.C. Lee, J. Phys. Chem. Solids 91, 128–135 (2016)

    Article  Google Scholar 

  38. D. Gokcen, O. Şentürk, E. Karaca, N.O. Pekmes, K. Pekmez, J. Mater. Sci. 30, 5733–5743 (2019)

    CAS  Google Scholar 

  39. W. Li, Z. Sun, D. Tian, I.P. Nevirkovets, S.X. Dou, J. Appl. Phys. 116, 033911 (2014)

    Article  Google Scholar 

  40. R.K. Bhan, R. Saxena, C.R. Jalwania, S.K. Lomash, Def. Sci. J. 59, 580–589 (2009)

    Article  CAS  Google Scholar 

  41. P.L. Richards, J. Appl. Phys. 76, 1–24 (1994)

    Article  CAS  Google Scholar 

  42. F. Niklaus, A. Decharat, C. Jansson, G. Stemme, Infrared Phys. Tech. 51, 168–177 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Seema Vinayak, Director, Solid State Physics Laboratory (DRDO) for her constant encouragement and permission to publish this work. Help from colleagues of SSPL and Delhi University are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, I., Jain, S., Lamba, S.S. et al. Effect of growth and electrical properties of TiOx films on microbolometer design. J Mater Sci: Mater Electron 31, 6671–6678 (2020). https://doi.org/10.1007/s10854-020-03223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03223-y

Navigation