Skip to main content
Log in

Mixed-solvothermal synthesis and morphology-dependent electrochemical properties of α-Fe2O3 nanoparticles for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A mixed-solvothermal method was used to synthesize the α-Fe2O3 nanoparticles with nearly spherical, rod-like, disk-like morphologies by varying the precipitant or solvent. When used as the anode material for Li-ion batteries, the nearly spherical α-Fe2O3 nanoparticles with a high monodispersity and an average diameter of about 50.5 nm exhibited much better cycle stability and rate performance than their disk-like and rod-like equivalents. Their reversible capacity reached up to 1500 mAh/g that far exceeded their theoretical value (1007 mAh/g) at a current density of 0.1 A/g. Even after 100 cycles, there was still a capability retention of about 1200 mAh/g. Moreover, the analysis of the Nyquist plots revealed that the nearly spherical α-Fe2O3 nanoparticles presented the lowest charge-transfer resistance among the three samples. The present study provides an effective way to control the morphologies of nanoparticles, and these nanostructures would present great potentials for the applications in LIBs or some other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Edit. 53, 1488–1504 (2014)

    Article  CAS  Google Scholar 

  2. Y. Zhao, X.F. Li, B. Yan, D.B. Xiong, D.J. Li, S. Lawes, X.L. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 19–21 (2016)

    Google Scholar 

  3. J.W. Ju, Y.T. Wang, B.B. Chen, J. Ma, S.M. Dong, J.C. Chai, H.T. Qu, L.F. Cui, X.X. Wu, G.L. Cui, Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces 10, 13588–13597 (2018)

    Article  CAS  Google Scholar 

  4. M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)

    Article  CAS  Google Scholar 

  5. P.G. He, Z.P. Ding, X.D. Zhao, J.H. Liu, S.L. Yang, P. Gao, L.Z. Fan, Single-crystal alpha-Fe2O3 with engineered exposed (001) facet for high-rate, long-cycle-life lithium-ion battery anode. Inorg. Chem. 58, 12724–12732 (2019)

    Article  CAS  Google Scholar 

  6. L. Zhang, H.B. Wu, X.W. Lou, Iron-oxide-based advanced anode materials for lithium ion batteries. Adv. Energy Mater. 4, 1300958 (2014)

    Article  Google Scholar 

  7. J.M. Jeong, B.G. Choi, S.C. Lee, K.G. Lee, S.J. Chang, Y.K. Han, Y.B. Lee, H.U. Lee, S. Kwon, G. Lee, C.S. Lee, Y.S. Huh, Hierarchical hollow spheres of Fe2O3@Polyaniline for lithium ion battery anodes. Adv. Mater. 25, 6250–6255 (2013)

    Article  CAS  Google Scholar 

  8. N. Zhang, X.P. Han, Y.C. Liu, X.F. Hu, Q. Zhao, J. Chen, 3D porous gamma Fe2O3@C nanocomposite as high-performance anode material of Na-Ion batteries. Adv. Energy Mater. 5, 1401123 (2015)

    Article  Google Scholar 

  9. L. Zhang, H.B. Wu, X.W. Lou, Metal-organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 135, 10664–10672 (2013)

    Article  CAS  Google Scholar 

  10. K.A. Kwon, H.S. Lim, Y.K. Sun, K.D. Suh, α-Fe2O3 Submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries. J. Phys. Chem. C 118, 2897–2907 (2014)

    Article  CAS  Google Scholar 

  11. M.V. Reddy, C.Y. Quan, S. Adams, Mg, Cu, Zn doped Fe2O3 as an electrode material for Li-ion batteries. Mater. Lett. 212, 186–192 (2018)

    Article  CAS  Google Scholar 

  12. M.Y. Wang, Y. Huang, X.F. Chen, K. Wang, Synthesis of nitrogen and sulfur Co-doped graphene supported hollow ZnFe2O4 nanosphere composites for application in lithium-ion batteries. J. Alloys Compd. 691, 407–415 (2017)

    Article  CAS  Google Scholar 

  13. D. Luo, Y.P. Deng, X.L. Wang, Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage. ACS Nano 11, 11521–11530.f (2017)

    Article  CAS  Google Scholar 

  14. J. Jiang, Y.Y. Li, J.P. Liu, X.T. Huang, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012)

    Article  CAS  Google Scholar 

  15. L.F. Wang, G. Wei, X.Y. Dong, Y.L. Zhao, Z. Xing, H.P. Hong, Z.C. Ju, Hollow alpha-Fe2O3 nanotubes embedded in graphene aerogel as high-performance anode material for lithium-ion batteries. Chemistryselect 4, 11370–11377 (2019)

    Article  CAS  Google Scholar 

  16. S.M. Xu, C.M. Hessel, H. Ren, R.B. Yu, Q. Jin, M. Yang, α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 7, 632–637 (2014)

    Article  CAS  Google Scholar 

  17. R. Reveendran, M.A. Khadar, Structural, optical and electrical properties of Cu doped α-Fe2O3 nanoparticles. Mater. Chem. Phys. 219, 142–154 (2018)

    Article  CAS  Google Scholar 

  18. P.C. Wang, H.P. Ding, T. Bark, C.H. Chen, Nanosized α-Fe2O3 and Li-Fe composite oxide electrodes for lithium-ion batteries. Electrochim. Acta 52, 6650–6655 (2007)

    Article  CAS  Google Scholar 

  19. X.W. Lv, P. Zhang, Z.C. Wu, J.S. Yu, D.T. Ge, L.L. Yang, Self-assembly of Fe2O3 nanorods in carbon nanotube network as a 3D aerogel architecture for lithium ion batteries. Ceram. Int. 45, 5796–5800 (2019)

    Article  CAS  Google Scholar 

  20. F.C. Zheng, M.N. He, Y. Yang, Q.W. Chen, Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen doped hollow carbon spheres as highperformance anodes for lithium-ion batteries. Nanoscale 7, 3410–3417 (2015)

    Article  CAS  Google Scholar 

  21. Y.S. Luo, D.Z. Kong, J.S. Luo, Y.L. Wang, D.Y. Zhang, K.W. Qiu, C.W. Cheng, Seed-assisted synthesis of Co3O4@α-Fe2O3 core-shell nanoneedle arrays for lithium-ion battery anode with high capacity. RSC Adv. 4, 13241–13249 (2014)

    Article  CAS  Google Scholar 

  22. Q.D. Truong, H. Kobayashi, I. Honma, Rapid synthesis of MgCo2O4 and Mg2/3Ni4/3O2 nanocrystals in supercritical fluid for Mg-ion batteries. RSC Adv. 9, 36717–36725 (2019)

    Article  CAS  Google Scholar 

  23. Y.C. Zhang, Y. You, S. Xin, Rice Husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25, 120–127 (2016)

    Article  CAS  Google Scholar 

  24. L. Zhang, W.W. Hao, H.B. Wang, L.F. Zhang, X.M. Feng, Y.B. Zhang, W.X. Chen, H. Pang, H.H. Zheng, Porous graphene frame supported silicon@graphitic carbon via in situ solid-state synthesis for high-performance lithium-ion anodes. J. Mater. Chem. A 1, 7601–7611 (2013)

    Article  CAS  Google Scholar 

  25. Y. Wang, J. Roller, R. Maric, Novel flame synthesis of nanostructured α-Fe2O3, electrode as high-performance anode for lithium ion batteries. J. Power Sources 378, 511–515 (2018)

    Article  CAS  Google Scholar 

  26. X. Chen, Y. Zhang, X.F. Zhang, D. Yang, Exploiting oleic acid to prepare two-dimensional assembly of Si@graphitic carbon yolk-shell nanoparticles for lithium-ion battery anodes. Nano Res. 12, 631–636 (2019)

    Article  CAS  Google Scholar 

  27. X.P. Bai, X. Zhao, W.L. Fan, Preparation and enhanced photocatalytic hydrogen-evolution activity of ZnGa2O4/N-rGO heterostructures. RSC Adv. 7, 53145–53156 (2017)

    Article  CAS  Google Scholar 

  28. M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri, T.H. Jeon, W. Choi, A.Z. Moshfegh, Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 12, 59–95 (2019)

    Article  CAS  Google Scholar 

  29. J.W. Ju, F.L. Chen, C.R. Xia, Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells. Electrochim. Acta 136, 422–429 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, BS., Wang, P. & Song, J. Mixed-solvothermal synthesis and morphology-dependent electrochemical properties of α-Fe2O3 nanoparticles for lithium-ion batteries. J Mater Sci: Mater Electron 31, 6779–6785 (2020). https://doi.org/10.1007/s10854-020-03236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03236-7

Keywords

Navigation