Skip to main content

Advertisement

Log in

Cellular and molecular effects of silymarin on the transdifferentiation processes of LX-2 cells and its connection with lipid metabolism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fibrosis process in the liver is a clinical condition established in response to chronic lesions and may be reversible in many situations. In this process, hepatic stellate cells (HSCs) activate and produce extracellular matrix compounds. During fibrosis, the lipid metabolism is also altered and contributes to the transdifferentiation of the HSCs. Thus, controlling lipid metabolism in HSCs is suggested as a method to control or reverse the fibrotic condition. In the search for therapies that modulate lipid metabolism and treat liver diseases, silymarin has been identified as a relevant natural compound to treat liver pathologies. The present study aimed to evaluate the cellular and molecular effects of silymarin in the transdifferentiation process of HSCs (LX-2) from activated phenotype to a more quiesced-like cells , also focusing on understanding the modulatory effects of silymarin on lipid metabolism of HSCs. In our analyses, 100 µM of silymarin reduced the synthesis of actin filaments in activated cells, the synthesis of the protein level of α-SMA, and other pro-fibrotic factors such as CTGF and PFGF. The concentration of 150 µM silymarin did not reverse the activation aspects of LX-2 cells. However, both evaluated concentrations of the natural compound protected the cells from the negative effects of dimethyl sulfoxide (DMSO). Furthermore, we evaluated lipid-related molecules correlated to the transdifferentiation process of LX-2, and 100 µM of silymarin demonstrated to control molecules associated with lipid metabolism such as FASN, MLYCD, ACSL4, CPTs, among others. In contrast, cellular incubation with 150 µM of silymarin increased the synthesis of long-chain fatty acids and triglycerides, regarding the higher presence of DMSO (v/v) in the solvent. In conclusion, silymarin acts as a hepatoprotective agent and modulates the pro-fibrogenic stimuli of LX-2 cells, whose effects depend on stress levels in the cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baiocchini A, Montaldo C, Conigliaro A et al (2016) Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS ONE 11:1–14. https://doi.org/10.1371/journal.pone.0151736

    Article  CAS  Google Scholar 

  2. Sivakumar P, Kitson C, Jarai G (2019) Modeling and measuring extracellular matrix alterations in fibrosis: challenges and perspectives for antifibrotic drug discovery. Connect Tissue Res 60:62–70. https://doi.org/10.1080/03008207.2018.1500557

    Article  CAS  PubMed  Google Scholar 

  3. van der Meer AJ, Feld JJ, Hofer H et al (2017) Risk of cirrhosis-related complications in patients with advanced fibrosis following hepatitis C virus eradication. J Hepatol 66:485–493. https://doi.org/10.1016/j.jhep.2016.10.017

    Article  PubMed  Google Scholar 

  4. Wallace MC, Friedman SL (2014) Hepatic fibrosis and the microenvironment: fertile soil for hepatocellular carcinoma development. Gene Expr 16:77–84. https://doi.org/10.3727/105221614X13919976902057

    Article  CAS  PubMed  Google Scholar 

  5. Mederacke I, Hsu CC, Troeger JS et al (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823. https://doi.org/10.1038/ncomms3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reeves HL (2002) Activation of hepatic stellate cells—a key issue in liver fibrosis. Front Biosci 7:808–826. https://doi.org/10.2741/reeves

    Article  Google Scholar 

  7. Gandhi CR (2017) Hepatic stellate cell activation and pro-fibrogenic signals. J Hepatol 67:1104–1105. https://doi.org/10.1016/j.jhep.2017.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoneda A, Sakai-Sawada K, Niitsu Y, Tamura Y (2016) Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence. Exp Cell Res 341:8–17. https://doi.org/10.1016/j.yexcr.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  9. Davis BH, Kramer RT, Davidson NO (1990) Retinoic acid modulates rat Ito cell-proliferation, collagen, and transforming growth-factor-beta production. J Clin Investig 86:2062–2070

    Article  CAS  Google Scholar 

  10. Noyan S, Cavusoglu I, Zehra Minbay F (2006) The effect of vitamin a on CCl4-induced hepatic injuries in rats: a histochemical, immunohistochemical and ultrastructural study. Acta Histochem 107:421–434. https://doi.org/10.1016/j.acthis.2005.09.001

    Article  PubMed  Google Scholar 

  11. D’Ambrosio DN (2011) Physiology and pathophysiology of retinoid and lipid storage in mouse hepatic stellate cell lipid droplets. Columbia University Academic Commons

  12. Blaner WS, O’Byrne SM, Wongsiriroj N et al (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta - Mol Cell Biol Lipids 1791:467–473. https://doi.org/10.1016/j.bbalip.2008.11.001

    Article  CAS  Google Scholar 

  13. Testerink N, Ajat M, Houweling M et al (2012) Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS ONE 7:e34945. https://doi.org/10.1371/journal.pone.0034945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jing XY, Yang XF, Qing K, Ou-Yang Y (2013) Roles of the lipid metabolism in hepatic stellate cells activation. Chin Med Sci J 28:233–236. https://doi.org/10.1016/S1001-9294(14)60008-0

    Article  CAS  PubMed  Google Scholar 

  15. Bobowski-Gerard M, Zummo F, Staels B et al (2018) Retinoids issued from hepatic stellate cell lipid droplet loss as potential signaling molecules orchestrating a multicellular liver injury response. Cells 7:137. https://doi.org/10.3390/cells7090137

    Article  CAS  PubMed Central  Google Scholar 

  16. Hernádez-Gea V, Ghiassinejad Z, Rozenfeld R et al (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142:938–946. https://doi.org/10.1053/j.gastro.2011.12.044

    Article  Google Scholar 

  17. Lee Y-S, Kim SY, Ko E et al (2017) Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells. Sci Rep 7:3710. https://doi.org/10.1038/s41598-017-03389-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. She H, Xiong S, Hazra S, Tsukamoto H (2005) Adipogenic transcriptional regulation of hepatic stellate cells. J Biol Chem 280:4959–4967. https://doi.org/10.1074/jbc.M410078200

    Article  CAS  PubMed  Google Scholar 

  19. Hazra S, Miyahara T, Rippe RA, Tsukamoto H (2004) PPAR gamma and hepatic stellate cells. Comp Hepatol 3:S7. https://doi.org/10.1186/1476-5926-2-S1-S7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ebrahimi H, Naderian M, Sohrabpour AA (2018) New concepts on reversibility and targeting of liver fibrosis: a review article. Middle East J Dig Dis 10:133–148. https://doi.org/10.15171/mejdd.2018.103

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang Y, Deng X, Liang J (2017) Modulation of hepatic stellate cells and reversibility of hepatic fibrosis. Exp Cell Res 352:420–426. https://doi.org/10.1016/j.yexcr.2017.02.038

    Article  CAS  PubMed  Google Scholar 

  22. Ellis EL, Mann DA (2012) Clinical evidence for the regression of liver fibrosis. J Hepatol 56:1171–1180. https://doi.org/10.1016/j.jhep.2011.09.024

    Article  PubMed  Google Scholar 

  23. Tacke F, Weiskirchen R (2018) An update on the recent advances in antifibrotic therapy. Expert Rev Gastroenterol Hepatol 12:1143–1152. https://doi.org/10.1080/17474124.2018.1530110

    Article  CAS  PubMed  Google Scholar 

  24. Qu K, Huang Z, Lin T et al (2016) New insight into the anti-liver fibrosis effect of multitargeted tyrosine kinase inhibitors: from molecular target to clinical trials. Front Pharmacol 6:1–8. https://doi.org/10.3389/fphar.2015.00300

    Article  CAS  Google Scholar 

  25. Thomford N, Senthebane D, Rowe A et al (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19:1578. https://doi.org/10.3390/ijms19061578

    Article  CAS  PubMed Central  Google Scholar 

  26. Chin Y-W, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. AAPS J 8:E239–E253. https://doi.org/10.1208/aapsj080228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alves RRN, Rosa IML (2007) Biodiversity, traditional medicine and public health: where do they meet? J Ethnobiol Ethnomed 3:14. https://doi.org/10.1186/1746-4269-3-14

    Article  PubMed  PubMed Central  Google Scholar 

  28. Trappoliere M, Caligiuri A, Schmid M et al (2009) Silybin, a component of silymarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J Hepatol 50:1102–1111. https://doi.org/10.1016/j.jhep.2009.02.023

    Article  CAS  PubMed  Google Scholar 

  29. Ezhilarasan D, Evraerts J, Sid B et al (2017) Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression. Hepatobiliary Pancreat Dis Int 16:80–87. https://doi.org/10.1016/S1499-3872(16)60166-2

    Article  PubMed  Google Scholar 

  30. Feng B, Meng R, Huang B et al (2016) Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice. Free Radic Res 50:314–327. https://doi.org/10.3109/10715762.2015.1116689

    Article  CAS  PubMed  Google Scholar 

  31. Morales-González JA, Gayosso-Islas E, Snchez-Moreno C et al (2013) Protective effect of silymarin on liver damage by xenobiotics. In: Oxidative stress and chronic degenerative diseases—a role for antioxidants. InTech

  32. Vargas-Mendoza N, Madrigal-Santillán E, Morales-González Á et al (2014) Hepatoprotective effect of silymarin. World J Hepatol 6:1–18. https://doi.org/10.4254/wjh.v6.i3.144

    Article  Google Scholar 

  33. Papackova Z, Heczkova M, Dankova H et al (2018) Silymarin prevents acetaminophen-induced hepatotoxicity in mice. PLoS ONE 13:1–20. https://doi.org/10.1371/journal.pone.0191353

    Article  CAS  Google Scholar 

  34. Clichici S, Olteanu D, Nagy A-L et al (2015) Silymarin inhibits the progression of fibrosis in the early stages of liver injury in CCl4-treated rats. J Med Food 18:290–298. https://doi.org/10.1089/jmf.2013.0179

    Article  CAS  PubMed  Google Scholar 

  35. Kabir N, Ali H, Ateeq M et al (2014) Silymarin coated gold nanoparticles ameliorates CCl4-induced hepatic injury and cirrhosis through down regulation of hepatic stellate cells and attenuation of Kupffer cells. RSC Adv 4:9012–9020. https://doi.org/10.1039/C3RA46093B

    Article  CAS  Google Scholar 

  36. Rockey DC, Weymouth N, Shi Z (2013) Smooth muscle α actin (Acta 2) and myofibroblast function during hepatic wound healing. PLoS ONE 8:e77166. https://doi.org/10.1371/journal.pone.0077166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vecchione G, Grasselli E, Voci A et al (2016) Silybin counteracts lipid excess and oxidative stress in cultured steatotic hepatic cells. World J Gastroenterol 22:6016–6026. https://doi.org/10.3748/wjg.v22.i26.6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ezhilarasan D, Evraerts J, Brice S et al (2016) Silibinin inhibits proliferation and migration of human hepatic stellate LX-2 cells. J Clin Exp Hepatol 6:167–174. https://doi.org/10.1016/j.jceh.2016.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kalthoff S, Strassburg CP (2019) Contribution of human UDP-glucuronosyltransferases to the antioxidant effects of propolis, artichoke and silymarin. Phytomedicine 56:35–39. https://doi.org/10.1016/j.phymed.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  40. Balakin K, Savchuk N, Tetko I (2005) In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr Med Chem 13:223–241. https://doi.org/10.2174/092986706775197917

    Article  Google Scholar 

  41. Narasimha Murthy S, Shivakumar HN (2010) Topical and transdermal drug delivery. Handb Non-invasive Drug Deliv Syst. https://doi.org/10.1016/B978-0-8155-2025-2.10001-0

    Article  Google Scholar 

  42. Notman R, Noro M, O’Malley B, Anwar J (2006) Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128:13982–13983. https://doi.org/10.1021/ja063363t

    Article  CAS  PubMed  Google Scholar 

  43. Choi S, Sainz B, Corcoran P et al (2009) Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells. Xenobiotica 39:205–217. https://doi.org/10.1080/00498250802613620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song YM, Song SO, Jung YK et al (2012) Dimethyl sulfoxide reduces hepatocellular lipid accumulation through autophagy induction. Autophagy 8:1085–1097. https://doi.org/10.4161/auto.20260

    Article  PubMed  PubMed Central  Google Scholar 

  45. Deol P, Yang J, Morisseau C et al (2019) Dimethyl sulfoxide decreases levels of oxylipin diols in mouse liver. Front Pharmacol 10:1–7. https://doi.org/10.3389/fphar.2019.00580

    Article  CAS  Google Scholar 

  46. Yuan C, Gao J, Guo J et al (2014) Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes. PLoS ONE 9:e107447. https://doi.org/10.1371/journal.pone.0107447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hebling J, Bianchi L, Basso FG et al (2015) Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells. Dent Mater 31:399–405. https://doi.org/10.1016/j.dental.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Da Violante G, Zerrouk N, Richard I et al (2002) Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull 25:1600–1603. https://doi.org/10.1248/bpb.25.1600

    Article  PubMed  Google Scholar 

  49. Tunçer S, Gurbanov R, Sheraj I et al (2018) Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci Rep 8:14828. https://doi.org/10.1038/s41598-018-33234-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng X, Zhao C, Wang H et al (2010) Dimethyl sulfoxide decrease type-I and -III collagen synthesis in human hepatic stellate cells and human foreskin fibroblasts. Adv Sci Lett 3:496–499. https://doi.org/10.1166/asl.2010.1147

    Article  CAS  Google Scholar 

  51. Xu L, Hui AY, Albanis E et al (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54:142–151. https://doi.org/10.1136/gut.2004.042127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koo YC, Pyo MC, Nam MH et al (2016) Chebulic acid prevents hepatic fibrosis induced by advanced glycation end-products in LX-2 cell by modulating Nrf2 translocation via ERK pathway. Toxicol In Vitro 34:8–15. https://doi.org/10.1016/j.tiv.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  53. Lv J, Bai R, Wang L et al (2018) Artesunate may inhibit liver fibrosis via the FAK/Akt/β-catenin pathway in LX-2 cells. BMC Pharmacol Toxicol. 19:64. https://doi.org/10.1186/s40360-018-0255-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. da Silva CM, Caetano FH, Pereira FDC et al (2019) Cellular and molecular effects of Baccharis dracunculifolia D.C. and Plectranthus barbatus Andrews medicinal plant extracts on retinoid metabolism in the human hepatic stellate cell LX-2. BMC Complement Altern Med. 19:222. https://doi.org/10.1186/s12906-019-2591-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survivalApplication to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  56. de Oliveira da Silva B, Lima KF, Gonçalves LR et al (2016) MicroRNA profiling of the effect of the heptapeptide angiotensin-(1–7) in A549 lung tumor cells reveals a role for miRNA149-3p in cellular migration processes. PLoS ONE 11:e0162094. https://doi.org/10.1371/journal.pone.0162094

    Article  CAS  Google Scholar 

  57. Fischer E, Speier A (1985) Darstellung der ester. Berichte der Dtsch Chem Gesellschaft 28:3252–3258. https://doi.org/10.1002/cber.189502803176

    Article  Google Scholar 

  58. Rambold AS, Cohen S, Lippincott-Schwartz J (2015) Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 32:678–692. https://doi.org/10.1016/j.devcel.2015.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  60. Srere PA (1969) Citrate synthase. [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol 13:3–11. https://doi.org/10.1016/0076-6879(69)13005-0

    Article  CAS  Google Scholar 

  61. Siu PM, Donley DA, Bryner RW, Alway SE (2003) Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles. J Appl Physiol 94:555–560. https://doi.org/10.1152/japplphysiol.00821.2002

    Article  CAS  PubMed  Google Scholar 

  62. Cui X, Zhang X, Yin Q et al (2014) F-actin cytoskeleton reorganization is associated with hepatic stellate cell activation. Mol Med Rep 9:1641–1647. https://doi.org/10.3892/mmr.2014.2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galvao J, Davis B, Tilley M et al (2014) Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J 28:1317–1330. https://doi.org/10.1096/fj.13-235440

    Article  CAS  PubMed  Google Scholar 

  64. Kikuchi A, Pradhan-Sundd T, Singh S et al (2017) Platelet-derived growth factor receptor α contributes to human hepatic stellate cell proliferation and migration. Am J Pathol 187:2273–2287. https://doi.org/10.1016/j.ajpath.2017.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ying HZ, Chen Q, Zhang WY et al (2017) PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (review). Mol Med Rep 16:7879–7889. https://doi.org/10.3892/mmr.2017.7641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshida S, Ikenaga N, Liu SB et al (2014) Extrahepatic platelet-derived growth factor-β, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 147:1378–1392. https://doi.org/10.1053/j.gastro.2014.08.038

    Article  CAS  PubMed  Google Scholar 

  67. Shi C, Li G, Tong Y et al (2016) Role of CTGF gene promoter methylation in the development of hepatic fibrosis. Am J Transl Res 8:125–132

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lipson KE, Wong C, Teng Y, Spong S (2012) CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5:S24. https://doi.org/10.1186/1755-1536-5-S1-S24

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jophlin LL, Koutalos Y, Chen C et al (2018) Hepatic stellate cells retain retinoid-laden lipid droplets after cellular transdifferentiation into activated myofibroblasts. Am J Physiol Liver Physiol 315:G713–G721. https://doi.org/10.1152/ajpgi.00251.2017

    Article  CAS  Google Scholar 

  70. de Oliveira da Silva B, Alberici LC, Ramos LF et al (2018) Altered global microRNA expression in hepatic stellate cells LX-2 by angiotensin-(1–7) and miRNA-1914-5p identification as regulator of pro-fibrogenic elements and lipid metabolism. Int J Biochem Cell Biol 98:137–155. https://doi.org/10.1016/j.biocel.2018.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim CW, Addy C, Kusunoki J et al (2017) Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394–406.e6. https://doi.org/10.1016/j.cmet.2017.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Investig 122:1958–1959. https://doi.org/10.1172/JCI63967

    Article  CAS  PubMed  Google Scholar 

  73. Currie E, Schulze A, Zechner R et al (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161. https://doi.org/10.1016/j.cmet.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kastaniotis AJ, Autio KJ, Kerätär JM et al (2017) Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta - Mol Cell Biol Lipids 1862:39–48. https://doi.org/10.1016/j.bbalip.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  75. Eigentler A, Draxl A, Wiethüchter A et al (2015) Laboratory protocol: citrate synthase a mitochondrial marker enzyme. Mitochondrial Physiol Netw 04:1–11

    Google Scholar 

  76. Vickers AEM (2009) Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol 37:78–88. https://doi.org/10.1177/0192623308329285

    Article  CAS  PubMed  Google Scholar 

  77. Kolahi K, Louey S, Varlamov O, Thornburg K (2016) Real-time tracking of BODIPY-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells. PLoS ONE 11:e0153522. https://doi.org/10.1371/journal.pone.0153522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Costes SV, Daelemans D, Cho EH et al (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003. https://doi.org/10.1529/biophysj.103.038422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Verheijen M, Lienhard M, Schrooders Y et al (2019) DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 9:4641. https://doi.org/10.1038/s41598-019-40660-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rašković A, Stilinović N, Kolarović J et al (2011) The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules 16:8601–8613. https://doi.org/10.3390/molecules16108601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eminzade S, Uraz F, Izzettin FV (2008) Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals. Nutr Metab 5:1–8. https://doi.org/10.1186/1743-7075-5-18

    Article  CAS  Google Scholar 

  82. Jia JD, Bauer M, Cho JJ et al (2001) Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen α1(I) and TIMP-1. J Hepatol 35:392–398. https://doi.org/10.1016/S0168-8278(01)00148-9

    Article  CAS  PubMed  Google Scholar 

  83. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65:1035–1041. https://doi.org/10.1016/S0006-2952(03)00002-9

    Article  CAS  PubMed  Google Scholar 

  84. Mata-Santos HA, Dutra FF, Rocha CC et al (2014) Silymarin reduces profibrogenic cytokines and reverses hepatic fibrosis in chronic murine schistosomiasis. Antimicrob Agents Chemother 58:2076–2083. https://doi.org/10.1128/AAC.01936-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hou W, Syn W-K (2018) Role of metabolism in hepatic stellate cell activation and fibrogenesis. Front Cell Dev Biol 6:1–10. https://doi.org/10.3389/fcell.2018.00150

    Article  Google Scholar 

  86. Trautwein C, Friedman SL, Schuppan D, Pinzani M (2015) Hepatic fibrosis: concept to treatment. J Hepatol 62:S15–S24. https://doi.org/10.1016/j.jhep.2015.02.039

    Article  CAS  PubMed  Google Scholar 

  87. Yoon YJ, Friedman SL, Lee YA (2016) Antifibrotic therapies: where are we now? Semin Liver Dis 36:83–98. https://doi.org/10.1055/s-0036-1571295

    Article  CAS  Google Scholar 

  88. Sandoval PC, Slentz DH, Pisitkun T et al (2013) Proteome-wide measurement of protein half-lives and translation rates in vasopressin-sensitive collecting duct cells. J Am Soc Nephrol 24:1793–1805. https://doi.org/10.1681/ASN.2013030279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao J, Sun XB, Ye F, Tian WX (2011) Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin. Mol Cell Biochem 351:19–28. https://doi.org/10.1007/s11010-010-0707-z

    Article  CAS  PubMed  Google Scholar 

  90. Singh G, Goyal R, Sharma PL (2012) Pharmacological potential of silymarin in combination with hepatoprotective plants against experimental hepatotoxicity in rats. Asian J Pharm Clin Res 5:128–133

    CAS  Google Scholar 

  91. Serviddio G, Bellanti F, Stanca E et al (2014) Free radical biology and medicine silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2014.05.002

    Article  PubMed  Google Scholar 

  92. Federico A, Dallio M, Loguercio C (2017) Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. https://doi.org/10.3390/molecules22020191

    Article  PubMed  PubMed Central  Google Scholar 

  93. Thi D, Lien P, Thi C et al (2016) Hepatoprotective effect of silymarin on chronic hepatotoxicity in mice induced by carbon tetrachloride. J Pharmacogn Phytochem 5:262–266

    Google Scholar 

  94. Rolo A (2003) Protection against post-ischemic mitochondrial injury in rat liver by silymarin or TUDC. Hepatol Res 26:217–224. https://doi.org/10.1016/S1386-6346(03)00108-6

    Article  CAS  PubMed  Google Scholar 

  95. Rodríguez-Cruz M, Sánchez González R, Sánchez García AM, Lòpez-Alarcòn M (2012) Coexisting role of fasting or feeding and dietary lipids in the control of gene expression of enzymes involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids. Gene 496:28–36. https://doi.org/10.1016/j.gene.2011.12.022

    Article  CAS  PubMed  Google Scholar 

  96. Duan N-N, Liu X-J, Wu J (2017) Palmitic acid elicits hepatic stellate cell activation through inflammasomes and hedgehog signaling. Life Sci 176:42–53. https://doi.org/10.1016/j.lfs.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  97. Li Y, Lu Z, Ru JH et al (2018) Saturated fatty acid combined with lipopolysaccharide stimulates a strong inflammatory response in hepatocytes in vivo and in vitro. Am J Physiol Metab. https://doi.org/10.1152/ajpendo.00015.2018

    Article  Google Scholar 

  98. Listenberger LL, Han X, Lewis SE et al (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082. https://doi.org/10.1073/pnas.0630588100

    Article  CAS  PubMed  Google Scholar 

  99. Kan CFK, Singh AB, Stafforini DM et al (2014) Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation. J Lipid Res 55:1657–1667. https://doi.org/10.1194/jlr.M045971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tuohetahuntila M, Spee B, Kruitwagen HS et al (2015) Role of long-chain acyl-CoA synthetase 4 in formation of polyunsaturated lipid species in hepatic stellate cells. Biochim Biophys Acta - Mol Cell Biol Lipids 1851:220–230. https://doi.org/10.1016/j.bbalip.2014.12.003

    Article  CAS  Google Scholar 

  101. Pashkovskaya AA, Vazdar M, Zimmermann L et al (2018) Mechanism of long-chain free fatty acid protonation at the membrane-water interface. Biophys J 114:2142–2151. https://doi.org/10.1016/j.bpj.2018.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Curtis-Prior P (2004) The eicosanoids. Wiley, West Sussex

    Book  Google Scholar 

  103. Schwabe RF, Maher JJ (2012) Lipids in liver disease: looking beyond steatosis. Gastroenterology 142:8–11. https://doi.org/10.1053/j.gastro.2011.11.004

    Article  PubMed  Google Scholar 

  104. Twu Y-C, Lee T-S, Lin Y-L et al (2016) Niemann-Pick type C2 protein mediates hepatic stellate cells activation by regulating free cholesterol accumulation. Int J Mol Sci. 177:1122. https://doi.org/10.3390/ijms17071122

    Article  CAS  Google Scholar 

  105. Hou W, Wing-Kin Syn W-K (2018) Role of metabolism in hepatic stellate cell activation and fibrogenesis. Front Cell Dev Biol 6:150. https://doi.org/10.3389/fcell.2018.00150

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen SR, Chen XP, Lu JJ, Wang Y, Wang YT (2015) Potent natural products and herbal medicines for treating liver fibrosis. Chin Med 10:7. https://doi.org/10.1186/s13020-015-0036-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Navarro VJ, Belle SH, D'Amato M (2019) Silymarin in non-cirrhotics with non-alcoholic steatohepatitis: a randomized, double-blind, placebo controlled trial. PLoS ONE 14:e0221683. https://doi.org/10.1371/journal.pone.0221683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the professor Scott L. Friedman who donated the LX-2 cell lines for this study, MAMM for StepOne™ Real-Time PCR System machine and Zanão-Filho S. for technical support.

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2013/21186-7, 2016/23509-4 and 2018/05286-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen C. M. Moraes.

Ethics declarations

Conflict of interest

The authors affirm that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.M., Ferrari, G.D., Alberici, L.C. et al. Cellular and molecular effects of silymarin on the transdifferentiation processes of LX-2 cells and its connection with lipid metabolism. Mol Cell Biochem 468, 129–142 (2020). https://doi.org/10.1007/s11010-020-03717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03717-7

Keywords

Navigation