Skip to main content
Log in

Peroxiredoxin 4 inhibits insulin-induced adipogenesis through regulation of ER stress in 3T3-L1 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Obesity was originally considered a disease endemic to developed countries but has since emerged as a global health problem. Obesity is characterized by abnormal or excessive lipid accumulation (World Health Organization, WHO) resulting from pre-adipocyte differentiation (adipogenesis). The endoplasmic reticulum (ER) produces proteins and cholesterol and shuttles these compounds to their target sites. Many studies have implicated ER stress, indicative of ER dysfunction, in adipogenesis. Reactive oxygen species (ROS) are also known to be involved in pre-adipocyte differentiation. Prx4 specific to the ER lumen exhibits ROS scavenging activity, and we thereby focused on ER-specific Prx4 in tracking changes in adipocyte differentiation and lipid accumulation. Overexpression of Prx4 reduced ER stress and suppressed lipid accumulation by regulating adipogenic gene expression during adipogenesis. Our results demonstrate that Prx4 inhibits ER stress, lowers ROS levels, and attenuates pre-adipocyte differentiation. These findings suggested enhancing the activity of Prx4 may be helpful in the treatment of obesity; the data also support the development of new therapeutic approaches to obesity and obesity-related metabolic disorders.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rowland DL, McNabney SM, Mann AR (2017) Sexual function, obesity, and weight loss in men and women. Sex Med Rev 5:323–338. https://doi.org/10.1016/j.sxmr.2017.03.006

    Article  PubMed  Google Scholar 

  2. Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, Merkus D (2017) The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res 113:1035–1045. https://doi.org/10.1093/cvr/cvx093

    Article  CAS  PubMed  Google Scholar 

  3. Smyth S, Heron A (2006) Diabetes and obesity: the twin epidemics. Nat Med 12:75–80. https://doi.org/10.1038/nm0106-75

    Article  CAS  PubMed  Google Scholar 

  4. Newell-Fugate AE (2017) The role of sex steroids in white adipose tissue adipocyte function. Reproduction 153:R133–R149. https://doi.org/10.1530/REP-16-0417

    Article  CAS  PubMed  Google Scholar 

  5. Bodis K, Roden M (2018) Energy metabolism of white adipose tissue and insulin resistance in humans. Eur J Clin Invest 48:e13017. https://doi.org/10.1111/eci.13017

    Article  CAS  PubMed  Google Scholar 

  6. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16:22–26. https://doi.org/10.1101/gad.948702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114. https://doi.org/10.1016/j.tem.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  8. Tsai YC, Yang BC, Peng WH, Lee YM, Yen MH, Cheng PY (2017) Heme oxygenase-1 mediates anti-adipogenesis effect of raspberry ketone in 3T3-L1 cells. Phytomedicine 31:11–17. https://doi.org/10.1016/j.phymed.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  9. Xiao X, Qi W, Clark JM, Park Y (2017) Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes. Food Chem Toxicol 109:123–129. https://doi.org/10.1016/j.fct.2017.08.049

    Article  CAS  PubMed  Google Scholar 

  10. Tanis RM, Piroli GG, Day SD, Frizzell N (2015) The effect of glucose concentration and sodium phenylbutyrate treatment on mitochondrial bioenergetics and ER stress in 3T3-L1 adipocytes. Biochim Biophys Acta 1853:213–221. https://doi.org/10.1016/j.bbamcr.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Kaufman RJ (2016) The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 57:1329–1338. https://doi.org/10.1194/jlr.R067595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wires ES, Trychta KA, Back S, Sulima A, Rice KC, Harvey BK (2017) High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver. J Hepatol 67:1009–1017. https://doi.org/10.1016/j.jhep.2017.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461. https://doi.org/10.1126/science.1103160

    Article  CAS  PubMed  Google Scholar 

  14. Hampton RY (2000) ER stress response: getting the UPR hand on misfolded proteins. Curr Biol 10:R518–R521

    Article  CAS  Google Scholar 

  15. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454. https://doi.org/10.1016/s0092-8674(00)80855-7

    Article  CAS  PubMed  Google Scholar 

  16. Zeeshan HM, Lee GH, Kim HR, Chae HJ (2016) Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci 17:327. https://doi.org/10.3390/ijms17030327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang XT, Liu W, Zhou Y, Sun M, Sun CC, Zhang CY, Tang SY (2019) Endoplasmic reticulum stress contributes to NMDA-induced pancreatic beta-cell dysfunction in a CHOP-dependent manner. Life Sci 232:116612. https://doi.org/10.1016/j.lfs.2019.116612

    Article  CAS  PubMed  Google Scholar 

  18. Henkel AS (2018) Unfolded protein response sensors in hepatic lipid metabolism and nonalcoholic fatty liver disease. Semin Liver Dis 38:320–332. https://doi.org/10.1055/s-0038-1670677

    Article  CAS  PubMed  Google Scholar 

  19. Torre-Villalvazo I, Bunt AE, Aleman G, Marquez-Mota CC, Diaz-Villasenor A, Noriega LG, Estrada I, Figueroa-Juarez E, Tovar-Palacio C, Rodriguez-Lopez LA, Lopez-Romero P, Torres N, Tovar AR (2018) Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem 119:5970–5984. https://doi.org/10.1002/jcb.26794

    Article  CAS  PubMed  Google Scholar 

  20. Gamaley IA, Klyubin IV (1999) Roles of reactive oxygen species: signaling and regulation of cellular functions. Int Rev Cytol 188:203–255

    Article  CAS  Google Scholar 

  21. de Mello AH, Costa AB, Engel JDG, Rezin GT (2018) Mitochondrial dysfunction in obesity. Life Sci 192:26–32. https://doi.org/10.1016/j.lfs.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  22. Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis CD, Marinari UM, Pronzato MA, Traverso N, Domenicotti C (2016) Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev 2016:6235641. https://doi.org/10.1155/2016/6235641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  CAS  Google Scholar 

  24. Tavender TJ, Sheppard AM, Bulleid NJ (2008) Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochem J 411:191–199. https://doi.org/10.1042/BJ20071428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim MH, Park SJ, Kim JH, Seong JB, Kim KM, Woo HA, Lee DS (2018) Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. Free Radic Biol Med 123:27–38. https://doi.org/10.1016/j.freeradbiomed.2018.05.061

    Article  CAS  PubMed  Google Scholar 

  26. Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh KH, Kim YS, Woo HA, Rhee SG, Lee KJ, Ha H (2012) Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid Redox Signal 16:229–243. https://doi.org/10.1089/ars.2011.3952.10.1089/ars.2010.3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park SJ, Choe YG, Kim JH, Chang KT, Lee HS, Lee DS (2016) Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes. Food Chem Toxicol 93:5–12. https://doi.org/10.1016/j.fct.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  28. Kim JH, Park SJ, Kim B, Choe YG, Lee DS (2017) Insulin-stimulated lipid accumulation is inhibited by ROS-scavenging chemicals, but not by the Drp1 inhibitor Mdivi-1. PLoS ONE 12:e0185764. https://doi.org/10.1371/journal.pone.0185764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zebisch K, Voigt V, Wabitsch M, Brandsch M (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425:88–90. https://doi.org/10.1016/j.ab.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  30. Southern JA, Young DF, Heaney F, Baumgartner WK, Randall RE (1991) Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J Gen Virol 72(Pt 7):1551–1557. https://doi.org/10.1099/0022-1317-72-7-1551

    Article  CAS  PubMed  Google Scholar 

  31. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Moreno-Aliaga MJ, Martinez JA, project MENA (2018) Endoplasmic reticulum stress epigenetics is related to adiposity, dyslipidemia, and insulin resistance. Adipocyte 7:137–142. https://doi.org/10.1080/21623945.2018.1447731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS (2005) Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7:619–626. https://doi.org/10.1089/ars.2005.7.619

    Article  CAS  PubMed  Google Scholar 

  34. Okado-Matsumoto A, Matsumoto A, Fujii J, Taniguchi N (2000) Peroxiredoxin IV is a secretable protein with heparin-binding properties under reduced conditions. J Biochem 127:493–501. https://doi.org/10.1093/oxfordjournals.jbchem.a022632

    Article  CAS  PubMed  Google Scholar 

  35. Wang QM, Cai Y, Tian DR, Yang H, Wei ZN, Wang F, Han JS (2010) Peroxiredoxin1: a potential obesity-related factor in the hypothalamus. Med Sci Monit 16:BR321–BR326

    CAS  PubMed  Google Scholar 

  36. Moghaddam DA, Heber A, Capin D, Kreutz T, Opitz D, Lenzen E, Bloch W, Brixius K, Brinkmann C (2011) Training increases peroxiredoxin 2 contents in the erythrocytes of overweight/obese men suffering from type 2 diabetes. Wien Med Wochenschr 161:511–518. https://doi.org/10.1007/s10354-011-0037-0

    Article  PubMed  Google Scholar 

  37. Chung SS, Ahn BY, Kim M, Choi HH, Park HS, Kang S, Park SG, Kim YB, Cho YM, Lee HK, Chung CH, Park KS (2010) Control of adipogenesis by the SUMO-specific protease SENP2. Mol Cell Biol 30:2135–2146. https://doi.org/10.1128/MCB.00852-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312. https://doi.org/10.1146/annurev.biochem.77.061307.091829

    Article  CAS  PubMed  Google Scholar 

  39. Bag S, Ramaiah S, Anbarasu A (2015) fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study. J Theor Biol 364:344–354. https://doi.org/10.1016/j.jtbi.2014.09.034

    Article  CAS  PubMed  Google Scholar 

  40. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  41. Seo MJ, Seo YJ, Pan CH, Lee OH, Kim KJ, Lee BY (2016) Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother Res 30:1802–1808. https://doi.org/10.1002/ptr.5683

    Article  CAS  PubMed  Google Scholar 

  42. Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 15:2025–2039. https://doi.org/10.1111/j.1582-4934.2011.01374.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lindholm D, Korhonen L, Eriksson O, Koks S (2017) Recent insights into the role of unfolded protein response in ER stress in health and disease. Front Cell Dev Biol 5:48. https://doi.org/10.3389/fcell.2017.00048

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zito E (2019) Targeting ER stress/ER stress response in myopathies. Redox Biol 26:101232. https://doi.org/10.1016/j.redox.2019.101232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marre ML, Profozich JL, Coneybeer JT, Geng X, Bertera S, Ford MJ, Trucco M, Piganelli JD (2016) Inherent ER stress in pancreatic islet beta cells causes self-recognition by autoreactive T cells in type 1 diabetes. J Autoimmun 72:33–46. https://doi.org/10.1016/j.jaut.2016.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee DG, Kam MK, Kim KM, Kim HS, Kwon OS, Lee HS, Lee DS (2018) Peroxiredoxin 5 prevents iron overload-induced neuronal death by inhibiting mitochondrial fragmentation and endoplasmic reticulum stress in mouse hippocampal HT-22 cells. Int J Biochem Cell Biol 102:10–19. https://doi.org/10.1016/j.biocel.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  47. Laurindo FR, Araujo TL, Abrahao TB (2014) Nox NADPH oxidases and the endoplasmic reticulum. Antioxid Redox Signal 20:2755–2775. https://doi.org/10.1089/ars.2013.5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  49. Yilmaz E (2017) Endoplasmic reticulum stress and obesity. Adv Exp Med Biol 960:261–276. https://doi.org/10.1007/978-3-319-48382-5_11

    Article  CAS  PubMed  Google Scholar 

  50. Pagliassotti MJ, Kim PY, Estrada AL, Stewart CM, Gentile CL (2016) Endoplasmic reticulum stress in obesity and obesity-related disorders: an expanded view. Metabolism 65:1238–1246. https://doi.org/10.1016/j.metabol.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K (2012) Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2:799. https://doi.org/10.1038/srep00799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Longo M, Spinelli R, D'Esposito V, Zatterale F, Fiory F, Nigro C, Raciti GA, Miele C, Formisano P, Beguinot F, Di Jeso B (2016) Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype. Biochim Biophys Acta 1863:1146–1156. https://doi.org/10.1016/j.bbamcr.2016.02.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Jae Yeop Kim, Mi Hye Kim and Dong-Seok Lee performed the experiment and wrote the paper. Hong Jun Lee, Jae-Won Huh, Sang-Rae Lee, Hyun-Shik Lee designed the study and experiments.

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government [NRF-2015R1A4A1042271, NRF-2017R1A2B4008176 and MSIT, NRF-2017R1A5A2015391], and the KRIBB Research Initiative Program [KGM4622013].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Seok Lee.

Ethics declarations

Conflicts of interest

None of the authors declare any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Kim, M.H., Lee, H.J. et al. Peroxiredoxin 4 inhibits insulin-induced adipogenesis through regulation of ER stress in 3T3-L1 cells. Mol Cell Biochem 468, 97–109 (2020). https://doi.org/10.1007/s11010-020-03714-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03714-w

Keywords

Navigation