Synlett 2020; 31(10): 945-952
DOI: 10.1055/s-0039-1691745
account
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Aromatic and Aliphatic Di-, Tri-, and Tetrasulfonic Acids

Jens Christoffers
a   Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany   Email: jens.christoffers@uol.de
,
Mathias S. Wickleder
b   Department für Chemie, Universität zu Köln, 50939 Köln, Germany   Email: mathias.wickleder@uni-koeln.de
› Author Affiliations
Financial support from the Deutsche Forschungsgemeinschaft (Grant No. CH157/17 and WI1842/11) is gratefully acknowledged.
Further Information

Publication History

Received: 15 January 2020

Accepted after revision: 13 February 2020

Publication Date:
17 March 2020 (online)


Abstract

Oligosulfonic acids are promising linker compounds for coordination polymers and metal-organic frameworks, however, compared to their carboxylic acid congeners, often not readily accessible by established synthetic routes. This Account highlights the synthesis of recently developed aromatic and aliphatic di-, tri- and tetrasulfonic acids. While multiple electrophilic sulfonations of aromatic substrates are rather limited, the nucleophilic aromatic substitution including an intramolecular variant, the Newman–Kwart rearrangement, allows the flexible introduction of up to four sulfur-containing moieties at an aromatic ring. Sulfonic acids are then accessed by oxidation of thiols, thioethers, or thioesters either directly with hydrogen peroxide or in two steps with chlorine (generated in situ from N-chlorosuccinimide/hydrochloric acid) to furnish sulfochlorides which are subsequently hydrolyzed. In the aliphatic series, secondary alcohols as starting materials are converted into thioethers, thioesters, or thiocarbonates by nucleophilic substitutions, which are also subsequently oxidized to furnish sulfonic acids.

1 Introduction

2 Electrophilic Aromatic Substitution

3 Nucleophilic Aromatic Substitution

3.1 Intermolecular SNAr

3.2 Intermolecular with Subsequent Oxidation

3.3 Intramolecular with Subsequent Oxidation

4 Nucleophilic Aliphatic Substitution with Subsequent Oxidation

5 Oxidation

5.1 Oxidation of Thiocarbonates

5.2 Oxidation of Thioethers

5.3 Oxidation of Thioesters

6 Thermolysis of Neopentylsulfonates

7 Functionalization via Diazonium Ions

8 Conclusion

 
  • References


    • Reviews:
    • 1a Wang Q, Astruc D. Chem. Rev. 2020; 120: 1438
    • 1b Service RF. Science 2019; 365: 964
    • 1c Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Angew. Chem. Int. Ed. 2019; 58: 15188 ; Angew. Chem. 2019, 131, 15330
    • 1d Pascanu V, Miera GG, Inge AK, Martin-Matute B. J. Am. Chem. Soc. 2019; 141: 7223
    • 1e Guillerm V, Maspoch D. J. Am. Chem. Soc. 2019; 141: 16517
    • 1f Liu M, Wu J, Hou H. Chem. Eur. J. 2019; 25: 2935
    • 1g Yang S, Peng L, Bulut S, Queen WL. Chem. Eur. J. 2019; 25: 2161
    • 1h Liu J, Hou S, Li W, Bandarenka AS, Fischer RA. Chem. Asian J. 2019; 14: 3474
    • 1i Ding M, Flaig RW, Jiang H.-L, Yaghi OM. Chem. Soc. Rev. 2019; 48: 2783
    • 1j Samaniyan M, Mirzaei M, Khajavian R, Eshtiagh-Hosseini H, Streb C. ACS Catal. 2019; 9: 10174
    • 1k Evans JD, Garai B, Reinsch H, Li W, Dissegna S, Bon V, Senkovska I, Fischer RA, Kaskel S, Janiak C, Stock N, Volkmer D. Coord. Chem. Rev. 2019; 380: 378
    • 1l Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. Science 2013; 341: 1230444
    • 1m Cook TR, Zheng Y.-R, Stang PJ. Chem. Rev. 2013; 113: 734
    • 2a Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature 1999; 402: 276
    • 2b Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keeffe M, Yaghi OM. Science 2003; 300: 1127
    • 3a Desai AV, Joarder B, Roy A, Samanta P, Babarao R, Ghosh SK. ACS Appl. Mater. Interfaces 2018; 10: 39049
    • 3b Zhang Y.-H, Li X, Song S, Yang H.-Y, Ma D, Liu Y.-H. CrystEngComm 2014; 16: 8390
    • 4a Singh S, Karthik R. CrystEngComm 2015; 17: 7363
    • 4b Guan L, Lv S, Wang Y. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2016; 46: 1021
    • 4c Cao H.-Y, Liu Q.-Y, Li L.-Q, Wang Y.-L, Chen L.-L, Yao Y. Z. Allg. Anorg. Chem. 2014; 640: 1420
    • 4d Yawer M, Sharma S, Kariem M, Sheikh HN. J. Inorg. Organomet. Polym. 2014; 24: 1077
    • 4e Horner MJ, Holman KT, Ward MD. J. Am. Chem. Soc. 2007; 129: 14640
    • 4f Holman KT, Pivovar AM, Swift JA, Ward MD. Acc. Chem. Res. 2001; 34: 107
    • 5a Dong X.-Y, Wang R, Wang J.-Z, Zang S.-Q, Mak TC. W. J. Mater. Chem. A 2015; 3: 641
    • 5b Zheng X.-F, Zhu L.-G. J. Mol. Struct. 2014; 1065–1066: 113
    • 5c Liu Q.-Y, Xiahou Z.-J, Wang Y.-L, Li L.-Q, Chen L.-L, Fu Y. CrystEngComm 2013; 15: 4930
    • 5d Zheng X.-F, Zhu L.-G. Polyhedron 2011; 30: 666
  • 6 Busse M, Andrews PC, Junk PC. Eur. J. Inorg. Chem. 2012; 1061
  • 7 Panasyuk GP, Azarova LA, Budova GP, Savost'yanov AP. Inorg. Mater. 2007; 43: 951
  • 8 Mietrach A, Muesmann TW. T, Christoffers J, Wickleder MS. Eur. J. Inorg. Chem. 2009; 5328
    • 9a Cognet M, Gutel T, Gautier R, Le Goff XF, Mesbah A, Dacheux N, Carboni M, Meyer D. Mater. Lett. 2019; 236: 73
    • 9b Shanthi PM, Hanumantha PJ, Ramalinga K, Gattu B, Datta MK, Kumta PN. J. Electrochem. Soc. 2019; 166: A1827
    • 9c Zitzer C, Muesmann TW. T, Christoffers J, Wickleder MS. New J. Chem. 2015; 39: 6117
    • 9d Zitzer C, Muesmann TW. T, Christoffers J, Schwickert C, Pöttgen R, Wickleder MS. CrystEngComm 2014; 16: 11064
  • 10 Fierz-David HE, Stamm G. Helv. Chim. Acta 1942; 25: 364
  • 11 Xu Y.-S, Zhao R.-X, Pei K.-K, Zhang G.-L, Xia Q, Zhang F.-B. Ind. Eng. Chem. Res. 2018; 57: 11826
  • 12 Muesmann TW. T, Wickleder MS, Christoffers J. Synthesis 2011; 2775
  • 13 Review: Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368; Angew. Chem. 2019, 131, 16518
  • 14 Muesmann TW. T, Zitzer C, Mietrach A, Klüner T, Christoffers J, Wickleder MS. Dalton Trans. 2011; 40: 3128
  • 15 Muesmann TW. T, Mietrach A, Christoffers J, Wickleder MS. Z. Anorg. Allg. Chem. 2010; 636: 1307
  • 16 Behler F, Wickleder MS, Christoffers J. ARKIVOC 2015; (ii): 64
    • 17a Kwart H, Evans ER. J. Org. Chem. 1966; 31: 413
    • 17b Newman MS, Karnes HA. J. Org. Chem. 1966; 31: 3980
  • 18 Lloyd-Jones GC, Moseley JD, Renny JS. Synthesis 2008; 661
  • 19 Nishiguchi A, Maeda K, Miki S. Synthesis 2006; 4131
  • 20 Muesmann TW. T, Zitzer C, Wickleder MS, Christoffers J. Inorg. Chim. Acta 2011; 369: 45
  • 21 Bertz SH, Cook JM, Gawish A, Weiss U. Org. Synth. 1986; 64: 27 ; Coll. Vol. 1990, 7, 50
  • 22 Muesmann TW. T, Wickleder MS, Zitzer C, Christoffers J. Synlett 2013; 24: 959
  • 23 Behler F, Zitzer C, Wickleder MS, Christoffers J. Eur. J. Inorg. Chem. 2014; 6225
    • 24a Recent examples: Xu J, Liu RY, Yeung CS, Buchwald SL. ACS Catal. 2019; 9: 6461
    • 24b Wang Y, Deng L, Wang X, Wu Z, Wang Y, Pan Y. ACS Catal. 2019; 9: 1630
    • 24c Scattolin T, Senol E, Yin G, Guo Q, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 12425; Angew. Chem. 2018, 130, 12605
    • 24d Chen C.-W, Chen Y.-L, Reddy DM, Du K, Li C.-E, Shih B.-H, Xue Y.-J, Lee C.-F. Chem. Eur. J. 2017; 23: 10087
    • 24e Oderinde MS, Frenette M, Robbins DW, Aquila B, Johannes JW. J. Am. Chem. Soc. 2016; 138: 1760
    • 24f Jouffroy M, Kelly CB, Molander GA. Org. Lett. 2016; 18: 876
    • 24g Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880; Angew. Chem. 2008, 120, 2922

      Reviews:
    • 25a Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 25b Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 25c Eichman CC, Stambuli K. Molecules 2011; 16: 590
    • 25d Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400; Angew. Chem. 2003, 115, 5558
    • 25e Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
  • 26 Kahrs C, Wickleder MS, Christoffers J. Eur. J. Org. Chem. 2018; 5754
  • 27 Kahrs C, Schmidtmann M, Wickleder MS, Christoffers J. Eur. J. Org. Chem. 2018; 6499
  • 28 Roberts JC, Gao H, Gopalsamy A, Kongsjahju A, Patch RJ. Tetrahedron Lett. 1997; 38: 355
  • 29 Schultz G. Ber. Dtsch. Chem. Ges. 1906; 39: 3345
  • 30 Muesmann TW. T, Ohlert J, Wickleder MS, Christoffers J. Eur. J. Org. Chem. 2011; 1695