Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular rewiring in lethal prostate cancer: the architect of drug resistance

Abstract

Over the past 5 years, the advent of combination therapeutic strategies has substantially reshaped the clinical management of patients with advanced prostate cancer. However, most of these combination regimens were developed empirically and, despite offering survival benefits, are not enough to halt disease progression. Thus, the development of effective therapeutic strategies that target the mechanisms involved in the acquisition of drug resistance and improve clinical trial design are an unmet clinical need. In this context, we hypothesize that the tumour engineers a dynamic response through the process of cellular rewiring, in which it adapts to the therapy used and develops mechanisms of drug resistance via downstream signalling of key regulatory cascades such as the androgen receptor, PI3K–AKT or GATA2-dependent pathways, as well as initiation of biological processes to revert tumour cells to undifferentiated aggressive states via phenotype switching towards a neuroendocrine phenotype or acquisition of stem-like properties. These dynamic responses are specific for each patient and could be responsible for treatment failure despite multi-target approaches. Understanding the common stages of these cellular rewiring mechanisms to gain a new perspective on the molecular underpinnings of drug resistance might help formulate novel combination therapeutic regimens.

Key points

  • Targeting mechanisms involved in the acquisition of drug resistance could result in more effective therapeutic strategies for patients with prostate cancer.

  • Cellular rewiring can be exploited by prostate cancer cells to acquire drug resistance by implementing alternative bypass signalling pathways after therapy exposure, thus enabling continued tumour proliferation and survival.

  • Tumour cell crosstalk with the microenvironment can also result in cellular rewiring processes that eventually lead to drug resistance.

  • Cellular rewiring mechanisms can induce phenotype switching towards a neuroendocrine phenotype and acquisition of stem-like properties.

  • Clinical trials are investigating the combination of standard therapies, such as anti-androgens, with agents targeting cellular rewiring mechanisms.

  • However, introducing these combinations that target cellular rewiring pathways into the prostate cancer armamentarium will require the development of predictive assays to anticipate toxicities and identify the most effective combinations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of treatments for advanced prostate cancer.
Fig. 2: Therapeutic targeting of cell rewiring mechanisms contributing to acquired drug resistance.
Fig. 3: Cellular plasticity and switching phenotypes associated with acquired drug resistance.

Similar content being viewed by others

References

  1. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    CAS  PubMed  Google Scholar 

  2. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  3. Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Scher, H. I. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  5. Smith, M. R. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med. 378, 1408–1418 (2018).

    CAS  PubMed  Google Scholar 

  6. Fizazi, K. et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 380, 1235–1246 (2019).

    CAS  PubMed  Google Scholar 

  7. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Fizazi, K. et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 13, 983–992 (2012).

    CAS  PubMed  Google Scholar 

  9. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    CAS  PubMed  Google Scholar 

  10. Ryan, C. J. et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 16, 152–160 (2015).

    CAS  PubMed  Google Scholar 

  11. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    CAS  PubMed  Google Scholar 

  12. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    CAS  PubMed  Google Scholar 

  13. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    PubMed  Google Scholar 

  14. DeVita, V. T. Jr. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    CAS  PubMed  Google Scholar 

  15. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fizazi, K. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377, 352–360 (2017).

    CAS  PubMed  Google Scholar 

  17. James, N. D. et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387, 1163–1177 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Armstrong, A. J. et al. ARCHES: a randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 37, 2974–2986 (2019).

    PubMed  Google Scholar 

  20. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002).

    CAS  PubMed  Google Scholar 

  21. Bradshaw, D. M. & Arceci, R. J. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J. Clin. Oncol. 16, 3674–3690 (1998).

    CAS  PubMed  Google Scholar 

  22. Lockhart, A. C., Tirona, R. G. & Kim, R. B. Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol. Cancer Ther. 2, 685–698 (2003).

    CAS  PubMed  Google Scholar 

  23. Rowinsky, E. K. et al. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J. Clin. Oncol. 16, 2964–2976 (1998).

    CAS  PubMed  Google Scholar 

  24. Armstrong, C. M. & Gao, A. C. Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. Am. J. Clin. Exp. Urol. 3, 64–76 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. O’Neill, A. J. et al. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol. Cancer 10, 126 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Zhu, Y. et al. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol. Cancer Ther. 12, 1829–1836 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    CAS  PubMed  Google Scholar 

  28. Kyle, A. H., Huxham, L. A., Yeoman, D. M. & Minchinton, A. I. Limited tissue penetration of taxanes: a mechanism for resistance in solid tumors. Clin. Cancer Res. 13, 2804–2810 (2007).

    CAS  PubMed  Google Scholar 

  29. Tredan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    Google Scholar 

  30. Jeong, C. W. et al. The role of hypoxia-inducible factor-1α and -2α in androgen insensitive prostate cancer cells. Urol. Oncol. 31, 1448–1456 (2013).

    CAS  PubMed  Google Scholar 

  31. Alshaker, H. et al. Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. Oncotarget 7, 80943–80956 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Hu, L. et al. Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene https://doi.org/10.1038/s41388-019-1070-5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fernandez, E. V. et al. Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells. Mol. Pharmacol. 87, 1006–1012 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen, M. M. & Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24, 1967–2000 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan, M. E., Li, J., Xu, H. E., Melcher, K. & Yong, E. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36, 3–23 (2015).

    CAS  PubMed  Google Scholar 

  36. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    PubMed  Google Scholar 

  37. Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).

    CAS  PubMed  Google Scholar 

  38. Gregory, C. W. et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61, 4315–4319 (2001).

    CAS  PubMed  Google Scholar 

  39. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    CAS  PubMed  Google Scholar 

  40. Chmelar, R., Buchanan, G., Need, E. F., Tilley, W. & Greenberg, N. M. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int. J. Cancer 120, 719–733 (2007).

    CAS  PubMed  Google Scholar 

  41. Thadani-Mulero, M. et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res. 74, 2270–2282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan, S. C. & Dehm, S. M. Constitutive activity of the androgen receptor. Adv. Pharmacol. 70, 327–366 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Qu, Y. et al. Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci. Rep. 5, 7654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Todenhofer, T. AR-V7 transcripts in whole blood RNA of patients with metastatic castration resistant prostate cancer correlate with response to abiraterone acetate. J. Urol 197, 135–142 (2017).

    CAS  PubMed  Google Scholar 

  46. Sharp, A. et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129, 192–208 (2019).

    PubMed  Google Scholar 

  47. Armstrong, C. M. & Gao, A. C. Current strategies for targeting the activity of androgen receptor variants. Asian J. Urol. 6, 42–49 (2019).

    PubMed  Google Scholar 

  48. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02606123 (2018).

  49. Liu, C. et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration resistant prostate cancer. Clin. Cancer Res. 20, 3198–3210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sobhani, N., Generali, D., D’Angelo, A., Aieta, M. & Roviello, G. Current status of androgen receptor-splice variant 7 inhibitor niclosamide in castrate-resistant prostate-cancer. Invest. N. Drugs 36, 1133–1137 (2018).

    CAS  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02807805 (2019).

  52. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03123978 (2019).

  53. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, B. Developing new targeting strategy for androgen receptor variants in castration resistant prostate cancer. Int. J. Cancer 141, 2121–2130 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, B.-D. & Lee, N. H. Aberrant RNA splicing in cancer and drug resistance. Cancers 10, 458 (2018).

    CAS  PubMed Central  Google Scholar 

  56. Ravindranathan, P. et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat. Commun. 4, 1923 (2013).

    PubMed  Google Scholar 

  57. Arora, V. K. et al. Glucocorticoid receptor confers resistance to anti-androgens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, J. et al. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. eLife 6, e20183 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Xie, N. et al. The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors. Int. J. Cancer 136, E27–E38 (2015).

    CAS  PubMed  Google Scholar 

  60. Ndibe, C., Wang, C. G. & Sonpavde, G. Corticosteroids in the management of prostate cancer: a critical review. Curr. Treat. Options Oncol. 16, 6 (2015).

    PubMed  Google Scholar 

  61. Yemelyanov, A. et al. Differential targeting of androgen and glucocorticoid receptors induces ER stress and apoptosis in prostate cancer cells: a novel therapeutic modality. Cell Cycle 11, 395–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02012296 (2018).

  63. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kregel, S. et al. Functional and mechanistic interrogation of BET bromodomain degraders for the treatment of metastatic castration-resistant prostate cancer. Clin. Cancer Res. 25, 4038–4048 (2019).

    PubMed  Google Scholar 

  66. Shah, N. et al. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. eLife 6, e27861 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Crona, D. J. & Whang, Y. E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers 9, 67 (2017).

    PubMed Central  Google Scholar 

  68. Zhao, P., Zhu, Y., Cheng, L. & Luo, J. Detection of androgen receptor (AR) and AR-V7 in small cell prostate carcinoma: diagnostic and therapeutic implications. Asian J. Urol. 6, 109–113 (2019).

    PubMed  Google Scholar 

  69. Lu, C. & Luo, J. Decoding the androgen receptor splice variants. Transl Androl. Urol. 2, 178–186 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Sun, F. et al. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors. J. Biol. Chem. 289, 1529–1539 (2014).

    CAS  PubMed  Google Scholar 

  71. Kong, D. et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate 75, 161–174 (2015).

    CAS  PubMed  Google Scholar 

  72. Kwegyir-Afful, A. K., Ramalingam, S., Purushottamachar, P., Ramamurthy, V. P. & Njar, V. C. Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget 6, 27440–27460 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Kwegyir-Afful, A. K., Bruno, R. D., Purushottamachar, P., Murigi, F. N. & Njar, V. C. Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. FEBS J. 283, 3898–3918 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Njar, V. C. O. & Brodie, A. M. H. Discovery and development of galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem. 58, 2077–2087 (2015).

    CAS  PubMed  Google Scholar 

  75. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02438007 (2017).

  76. El Sheikh, S. S., Romanska, H. M., Abel, P., Domin, J. & Lalani, E.-N. Predictive value of PTEN and AR coexpression of sustained responsiveness to hormonal therapy in prostate cancer–a pilot study. Neoplasia 10, 949–953 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Reid, A. H. M. et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br. J. Cancer 102, 678–684 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mulholland, D. J. et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19, 792–804 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao, H., Ouyang, X., Banach-Petrosky, W. A., Shen, M. M. & Abate-Shen, C. Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice. Cancer Res. 66, 7929–7933 (2006).

    CAS  PubMed  Google Scholar 

  81. Jiao, J. et al. Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development. Cancer Res. 67, 6083–6091 (2007).

    CAS  PubMed  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00629525 (2015).

  83. Jamaspishvili, T. et al. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 15, 222–234 (2018).

    CAS  PubMed  Google Scholar 

  84. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. O’Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    PubMed  PubMed Central  Google Scholar 

  86. Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Festuccia, C. et al. Bicalutamide increases phospho-Akt levels through Her2 in patients with prostate cancer. Endocr. Relat. Cancer 14, 601–611 (2007).

    CAS  PubMed  Google Scholar 

  88. Mikhailova, M. et al. AKT regulates androgen receptor-dependent growth and PSA expression in prostate cancer. Adv. Exp. Med. Biol. 617, 397–405 (2008).

    CAS  PubMed  Google Scholar 

  89. Kinkade, C. W. et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J. Clin. Invest. 118, 3051–3064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, S. et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res. 79, 2580–2592 (2019).

    CAS  PubMed  Google Scholar 

  91. Wu, Y. L. et al. Dual inhibition of PI3K/AKT and MEK/ERK pathways induces synergistic antitumor effects in diffuse intrinsic pontine glioma cells. Transl Oncol. 10, 221–228 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. de Bono, J. S. et al. Randomized phase II study evaluating akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss. Clin. Cancer Res. 25, 928–936 (2019).

    PubMed  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03072238 (2019).

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01331083 (2020).

  95. Hotte, S. J. et al. A phase II study of PX-866 in patients with recurrent or metastatic castration-resistant prostate cancer: Canadian Cancer Trials Group Study IND205. Clin. Genitourin. Cancer 17, 201–208.e1 (2019).

    PubMed  Google Scholar 

  96. Chow, H. et al. A phase 2 clinical trial of everolimus plus bicalutamide for castration-resistant prostate cancer. Cancer 122, 1897–1904 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakabayashi, M. et al. Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer. BJU Int. 110, 1729–1735 (2012).

    CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02106507 (2020).

  99. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02833883 (2019).

  100. Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).

    CAS  PubMed  Google Scholar 

  101. Wu, D. et al. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 42, 3607–3622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, Q. et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27, 380–392 (2007).

    PubMed  PubMed Central  Google Scholar 

  103. Pienta, K. J. & Bradley, D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin. Cancer Res. 12, 1665–1671 (2006).

    CAS  PubMed  Google Scholar 

  104. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate. Cancer. Cell 138, 245–256 (2009).

    CAS  Google Scholar 

  105. Hendriksen, P. J. M. et al. Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res. 66, 5012–5020 (2006).

    CAS  PubMed  Google Scholar 

  106. Vidal, S. J. et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 27, 223–239 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rodriguez-Bravo, V. et al. The role of GATA2 in lethal prostate cancer aggressiveness. Nat. Rev. Urol. 14, 38–48 (2017).

    CAS  PubMed  Google Scholar 

  108. Livingstone, C. IGF2 and cancer. Endocr. Relat. Cancer 20, R321–R339 (2013).

    CAS  PubMed  Google Scholar 

  109. Wu, J. D. et al. Combined in vivo effect of A12, a type 1 insulin-like growth factor receptor antibody, and docetaxel against prostate cancer tumors. Clin. Cancer Res. 12, 6153–6160 (2006).

    CAS  PubMed  Google Scholar 

  110. de Bono, J. S. et al. Phase II randomized study of figitumumab plus docetaxel and docetaxel alone with crossover for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 20, 1925–1934 (2014).

    PubMed  Google Scholar 

  111. Yu, E. Y. et al. SWOG S0925: a randomized phase II study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 33, 1601–1608 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Heidegger, I., Kern, J., Ofer, P., Klocker, H. & Massoner, P. Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis. Oncotarget 5, 2723–2735 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Mitchell, J. M., Mansfeld, J., Capitanio, J., Kutay, U. & Wozniak, R. W. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J. Cell Biol. 191, 505–521 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hill, R., Cautain, B., de Pedro, N. & Link, W. Targeting nucleocytoplasmic transport in cancer therapy. Oncotarget 5, 11–28 (2014).

    PubMed  Google Scholar 

  115. Kohler, A. & Hurt, E. Gene regulation by nucleoporins and links to cancer. Mol. Cell 38, 6–15 (2010).

    PubMed  Google Scholar 

  116. Simon, D. N. & Rout, M. P. Cancer and the nuclear pore complex. Adv. Exp. Med. Biol. 773, 285–307 (2014).

    CAS  PubMed  Google Scholar 

  117. Rodriguez-Bravo, V. et al. Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import. Cell 174, 1200–1215.e20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Soderholm, J. F. et al. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem. Biol. 6, 700–708 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Darnell, J. E. Jr. STATs and gene regulation. Science 277, 1630–1635 (1997).

    CAS  PubMed  Google Scholar 

  120. Patterson, S. G. et al. Novel role of Stat1 in the development of docetaxel resistance in prostate tumor cells. Oncogene 25, 6113–6122 (2006).

    CAS  PubMed  Google Scholar 

  121. Gibbons, N. B., Watson, R. W., Coffey, R. N., Brady, H. P. & Fitzpatrick, J. M. Heat-shock proteins inhibit induction of prostate cancer cell apoptosis. Prostate 45, 58–65 (2000).

    CAS  PubMed  Google Scholar 

  122. Sowery, R. D. et al. Clusterin knockdown using the antisense oligonucleotide OGX-011 re-sensitizes docetaxel-refractory prostate cancer PC-3 cells to chemotherapy. BJU Int. 102, 389–397 (2008).

    CAS  PubMed  Google Scholar 

  123. Chi, K. N. et al. Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): a phase 3, multicentre, open-label, randomised trial. Lancet Oncol. 18, 473–485 (2017).

    CAS  PubMed  Google Scholar 

  124. Zemskova, M., Sahakian, E., Bashkirova, S. & Lilly, M. The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells. J. Biol. Chem. 283, 20635–20644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Codony-Servat, J. et al. Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate 73, 512–521 (2013).

    CAS  PubMed  Google Scholar 

  126. Domingo-Domenech, J. et al. Interleukin 6, a nuclear factor-κB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-κB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin. Cancer Res. 12, 5578–5586 (2006).

    CAS  PubMed  Google Scholar 

  127. Kwok, W. K. et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 65, 5153–5162 (2005).

    CAS  PubMed  Google Scholar 

  128. Shiota, M. et al. Interaction between docetaxel resistance and castration resistance in prostate cancer: implications of Twist1, YB-1, and androgen receptor. Prostate 73, 1336–1344 (2013).

    CAS  PubMed  Google Scholar 

  129. Shiota, M. et al. Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression. Oncogene 29, 237–250 (2010).

    CAS  PubMed  Google Scholar 

  130. Wang, J. et al. ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat. Med. 22, 488–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    CAS  PubMed  Google Scholar 

  132. Di Lorenzo, G. et al. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin. Cancer Res. 8, 3438–3444 (2002).

    PubMed  Google Scholar 

  133. Gregory, C. W. et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J. Biol. Chem. 279, 7119–7130 (2004).

    CAS  PubMed  Google Scholar 

  134. Guo, Z. et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10, 309–319 (2006).

    CAS  PubMed  Google Scholar 

  135. Sridhar, S. S. et al. A multicenter phase II clinical trial of lapatinib (GW572016) in hormonally untreated advanced prostate cancer. Am. J. Clin. Oncol. 33, 609–613 (2010).

    CAS  PubMed  Google Scholar 

  136. Whang, Y. E. et al. A phase II study of lapatinib, a dual EGFR and HER-2 tyrosine kinase inhibitor, in patients with castration-resistant prostate cancer. Urol. Oncol. 31, 82–86 (2013).

    CAS  PubMed  Google Scholar 

  137. Chen, L. et al. Dual EGFR/HER2 inhibition sensitizes prostate cancer cells to androgen withdrawal by suppressing ErbB3. Clin. Cancer Res. 17, 6218–6228 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Chung, L. W. K., Baseman, A., Assikis, V. & Zhau, H. E. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J. Urol. 173, 10–20 (2005).

    PubMed  Google Scholar 

  139. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    PubMed  Google Scholar 

  141. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Antonarakis, E. & Armstrong, A. Evolving standards in the treatment of docetaxel-refractory castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 14, 192–205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer 9, 665–674 (2009).

    CAS  Google Scholar 

  144. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hodkinson, P. S. et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through β1 integrin-dependent activation of PI3-kinase. Cell Death Differ. 13, 1776–1788 (2006).

    CAS  PubMed  Google Scholar 

  146. Ahmed, A. A. et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell 12, 514–527 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Stehbens, S., Pemble, H., Murrow, L. & Wittmann, T. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol. 504, 293–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee, B. Y. et al. Phosphoproteomic profiling identifies focal adhesion kinase as a mediator of docetaxel resistance in castrate-resistant prostate cancer. Mol. Cancer Ther. 13, 190–201 (2014).

    CAS  PubMed  Google Scholar 

  149. Lin, H.-M. et al. Effect of FAK inhibitor VS-6063 (defactinib) on docetaxel efficacy in prostate cancer. Prostate 78, 308–317 (2018).

    CAS  PubMed  Google Scholar 

  150. Krušlin, B., Ulamec, M. & Tomas, D. Prostate cancer stroma: an important factor in cancer growth and progression. Bosn. J. Basic. Med. Sci. 15, 1–8 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Di Lorenzo, G., Buonerba, C. & Kantoff, P. W. Immunotherapy for the treatment of prostate cancer. Nat. Rev. Clin. Oncol. 8, 551–561 (2011).

    PubMed  Google Scholar 

  152. Levesque, C. & Nelson, P. S. Cellular constituents of the prostate stroma: key contributors to prostate cancer progression and therapy resistance. Cold Spring Harb. Perspect. Med. 8, a030510 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  Google Scholar 

  154. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Roubaud, G., Liaw, B. C., Oh, W. K. & Mulholland, D. J. Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nat. Rev. Clin. Oncol. 14, 269–283 (2017).

    CAS  PubMed  Google Scholar 

  156. Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018).

    CAS  PubMed  Google Scholar 

  157. Wang, H. T. et al. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis–a systematic review and pooled analysis. J. Clin. Oncol. 32, 3383–3390 (2014).

    PubMed  Google Scholar 

  158. Epstein, J. I. et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 38, 756–767 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Huang, J. et al. Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate 66, 1399–1406 (2006).

    CAS  PubMed  Google Scholar 

  160. Beltran, H. et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J. Clin. Oncol. 30, e386–e389 (2012).

    PubMed  Google Scholar 

  161. Terry, S. & Beltran, H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front. Oncol. 4, 60 (2014).

    PubMed  PubMed Central  Google Scholar 

  162. Burchardt, T. et al. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J. Urol. 162, 1800–1805 (1999).

    CAS  PubMed  Google Scholar 

  163. Cerasuolo, M. et al. Neuroendocrine transdifferentiation in human prostate cancer cells: an integrated approach. Cancer Res. 75, 2975–2986 (2015).

    CAS  PubMed  Google Scholar 

  164. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    CAS  PubMed  Google Scholar 

  165. Zhang, X.-Q. et al. Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene 22, 6704–6716 (2003).

    CAS  PubMed  Google Scholar 

  166. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl Med. 3, 75ra26 (2011).

    PubMed  PubMed Central  Google Scholar 

  168. Li, F. Z., Dhillon, A. S., Anderson, R. L., McArthur, G. & Ferrao, P. T. Phenotype switching in melanoma: implications for progression and therapy. Front. Oncol. 5, 31 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. Zou, M. et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7, 736–749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mu, P. et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355, 84–88 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sarkar, A. & Hochedlinger, K. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15–30 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17, 183–193 (2016).

    CAS  PubMed  Google Scholar 

  173. Liu, K. et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell. Signal. 25, 1264–1271 (2013).

    CAS  PubMed  Google Scholar 

  174. Russo, M. V. et al. SOX2 boosts major tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis. Oncotarget 7, 12372–12385 (2016).

    PubMed  Google Scholar 

  175. Li, X. et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/β-catenin signal network. Cancer Lett. 336, 379–389 (2013).

    CAS  PubMed  Google Scholar 

  176. Kregel, S. et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One 8, e53701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Choi, Y. J. et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol. 13, 1353–1360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Kareta, M. S. et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16, 39–50 (2015).

    CAS  PubMed  Google Scholar 

  179. Stolzenburg, S. et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 40, 6725–6740 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Xiang, R. et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br. J. Cancer 104, 1410–1417 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhou, Z. et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66, 7889–7898 (2006).

    CAS  PubMed  Google Scholar 

  182. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sharma, A. et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. 120, 4478–4492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. McNair, C. et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Invest. 128, 341–358 (2018).

    PubMed  Google Scholar 

  186. Grasso, C. S. et al. Integrative molecular profiling of routine clinical prostate cancer specimens. Ann. Oncol. 26, 1110–1118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Lee, J. K. et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03480646 (2019).

  192. Rotinen, M. et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat. Med. 24, 1887–1898 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kim, J. et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 36, 4072–4080 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657 (2005).

    CAS  PubMed  Google Scholar 

  195. Lapuk, A. V. et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J. Pathol. 227, 286–297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Li, Y. et al. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur. Urol. 71, 68–78 (2017).

    CAS  PubMed  Google Scholar 

  197. Bishop, J. L. et al. The master neural transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7, 54–71 (2017).

    CAS  PubMed  Google Scholar 

  198. Sakaeda, M. et al. Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in small-cell lung cancer. Lab. Invest. 93, 408–421 (2013).

    CAS  PubMed  Google Scholar 

  199. Fane, M. E., Chhabra, Y., Smith, A. G. & Sturm, R. A. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res. 32, 9–24 (2019).

    CAS  PubMed  Google Scholar 

  200. Lodato, M. A. et al. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet. 9, e1003288 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  PubMed  Google Scholar 

  202. Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Saygin, C., Matei, D., Majeti, R., Reizes, O. & Lathia, J. D. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24, 25–40 (2019).

    CAS  PubMed  Google Scholar 

  204. Vidal, S. J., Rodriguez-Bravo, V., Galsky, M., Cordon-Cardo, C. & Domingo-Domenech, J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 33, 4451–4463 (2014).

    CAS  PubMed  Google Scholar 

  205. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    CAS  PubMed  Google Scholar 

  206. Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R. & Tang, D. G. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+α2β1+ cell population is enriched in tumor-initiating cells. Cancer Res. 67, 6796–6805 (2007).

    CAS  PubMed  Google Scholar 

  207. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    CAS  PubMed  Google Scholar 

  208. Qin, J. et al. The PSA(−/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10, 556–569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Domingo-Domenech, J. et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 22, 373–388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Bae, K.-M. et al. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J. Urol. 183, 2045–2053 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Nieto, M. A. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011).

    CAS  PubMed  Google Scholar 

  213. Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Sci. 342, 1234850 (2013).

    Google Scholar 

  214. Smith, B. N. & Bhowmick, N. A. Role of EMT in metastasis and therapy resistance. J. Clin. Med. 5, 17 (2016).

    PubMed Central  Google Scholar 

  215. Voon, D. C., Huang, R. Y., Jackson, R. A. & Thiery, J. P. The EMT spectrum and therapeutic opportunities. Mol. Oncol. 11, 878–891 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Nieto, M. A., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  Google Scholar 

  218. Battula, V. L. et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28, 1435–1445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Celia-Terrassa, T. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122, 1849–1868 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Espinoza, I., Pochampally, R., Xing, F., Watabe, K. & Miele, L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. OncoTargets Ther. 6, 1249–1259 (2013).

    Google Scholar 

  221. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Byrne, N. M. et al. Androgen deprivation in LNCaP prostate tumour xenografts induces vascular changes and hypoxic stress, resulting in promotion of epithelial-to-mesenchymal transition. Br. J. Cancer 114, 659–668 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Izumi, K. et al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol. Med. 5, 1383–1401 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Sun, Y. et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 72, 527–536 (2012).

    CAS  PubMed  Google Scholar 

  225. Martin, S. K. et al. Multinucleation and mesenchymal-to-epithelial-transition alleviate resistance to combined cabazitaxel and antiandrogen therapy in advanced prostate cancer. Cancer Res. 76, 912–926 (2016).

    CAS  PubMed  Google Scholar 

  226. Chang, L. et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 4, e875 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Dubrovska, A. et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl Acad. Sci. USA 106, 268–273 (2009).

    CAS  PubMed  Google Scholar 

  228. Jennbacken, K. et al. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr. Relat. Cancer 17, 469–479 (2010).

    CAS  PubMed  Google Scholar 

  229. Tanaka, H. et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat. Med. 16, 1414–1420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Wang, M. et al. N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells. Int. J. Oncol. 48, 595–606 (2016).

    CAS  PubMed  Google Scholar 

  231. Jiang, Y.-G. et al. Role of Wnt/β-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1α. Int. J. Urol. 14, 1034–1039 (2007).

    CAS  PubMed  Google Scholar 

  232. Bierie, B. & Moses, H. L. TGF-β and cancer. Cytokine Growth Factor. Rev. 17, 29–40 (2006).

    CAS  PubMed  Google Scholar 

  233. Mulholland, D. J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72, 1878–1889 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Montanari, M. et al. Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget 8, 35376–35389 (2017).

    PubMed  PubMed Central  Google Scholar 

  235. Chen, W. S. et al. Genomic drivers of poor prognosis and enzalutamide resistance in metastatic castration-resistant prostate cancer. Eur. Urol. 76, 562–571 (2019).

    CAS  PubMed  Google Scholar 

  236. Marin-Aguilera, M. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol. Cancer Ther. 13, 1270–1284 (2014).

    CAS  PubMed  Google Scholar 

  237. Mellado, B. et al. Phase II trial of short-term neoadjuvant docetaxel and complete androgen blockade in high-risk prostate cancer. Br. J. Cancer 101, 1248–1252 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Smith, B. A. et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. Natl Acad. Sci. USA 112, E6544–E6552 (2015).

    CAS  PubMed  Google Scholar 

  239. Yoo, Y. A. et al. The role of castration-resistant Bmi1+Sox2+ cells in driving recurrence in prostate cancer. J. Natl Cancer Inst. 111, 311–321 (2019).

    PubMed  Google Scholar 

  240. Yoo, Y. A. et al. Bmi1 marks distinct castration-resistant luminal progenitor cells competent for prostate regeneration and tumour initiation. Nat. Commun. 7, 12943 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Zhang, D. et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat. Commun. 7, 10798 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. McKeithen, D., Graham, T., Chung, L. W. K. & Odero-Marah, V. Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate 70, 982–992 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Bishop, J. L., Thaper, D. & Zoubeidi, A. The multifaceted roles of STAT3 signaling in the progression of prostate cancer. Cancers Basel 6, 829–859 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Schroeder, A. et al. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 74, 1227–1237 (2014).

    CAS  PubMed  Google Scholar 

  245. Chang, P.-C. et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS One 9, e88556 (2014).

    PubMed  PubMed Central  Google Scholar 

  246. Rajan, P. et al. Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Eur. Urol. 66, 32–39 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Bisson, I. & Prowse, D. M. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19, 683–697 (2009).

    CAS  PubMed  Google Scholar 

  248. Yu, X., Wang, Y., DeGraff, D. J., Wills, M. L. & Matusik, R. J. Wnt/β-catenin activation promotes prostate tumor progression in a mouse model. Oncogene 30, 1868–1879 (2011).

    CAS  PubMed  Google Scholar 

  249. Lee, E. et al. Inhibition of androgen receptor and β-catenin activity in prostate cancer. Proc. Natl Acad. Sci. USA 110, 15710–15715 (2013).

    CAS  PubMed  Google Scholar 

  250. Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  251. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Wever, E. M., Draisma, G., Heijnsdijk, E. A. M. & de Koning, H. J. How does early detection by screening affect disease progression? Modeling estimated benefits in prostate cancer screening. Med. Decis. Making 31, 550–558 (2011).

    PubMed  PubMed Central  Google Scholar 

  254. Bastos, D. A. & Antonarakis, E. S. CTC-derived AR-V7 detection as a prognostic and predictive biomarker in advanced prostate cancer. Expert. Rev. Mol. Diagn. 18, 155–163 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Scher, H. I. et al. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. 4, 1179–1186 (2018).

    PubMed  PubMed Central  Google Scholar 

  256. Seitz, A. K. et al. AR-V7 in peripheral whole blood of patients with castration-resistant prostate cancer: association with treatment-specific outcome under abiraterone and enzalutamide. Eur. Urol. 72, 828–834 (2017).

    CAS  PubMed  Google Scholar 

  257. Del Re, M. et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur. Urol. 71, 680–687 (2017).

    PubMed  Google Scholar 

  258. Leyten, G. H. J. M. et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur. Urol. 65, 534–542 (2014).

    CAS  PubMed  Google Scholar 

  259. van der Toom, E. E. et al. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat. Rev. Urol. 16, 7–22 (2019).

    PubMed  PubMed Central  Google Scholar 

  260. Koo, K. M., Mainwaring, P. N., Tomlins, S. A. & Trau, M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat. Rev. Urol. 16, 302–317 (2019).

    PubMed  Google Scholar 

  261. Ku, S.-Y., Gleave, M. E. & Beltran, H. Towards precision oncology in advanced prostate cancer. Nat. Rev. Urol. 16, 645–654 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.D.-D. is funded by NIH-NCI R01 CA207311. V.R.-B. is funded by NIH-NCI R01 CA237398 and Prostate Cancer Foundation Young Investigator 2018 award. The authors thank E. W. Gerner for his support of the SKCC Prostate Cancer Program and the laboratory of J.D.-D., and the Philadelphia Prostate Cancer Biome Project for its support of the SKCC Prostate Cancer Program.

Author information

Authors and Affiliations

Authors

Contributions

M.C.-C., V.R.-B. and J.D.-D. researched data for the article. All authors made substantial contributions to discussions of content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Veronica Rodriguez-Bravo or Josep Domingo-Domenech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carceles-Cordon, M., Kelly, W.K., Gomella, L. et al. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol 17, 292–307 (2020). https://doi.org/10.1038/s41585-020-0298-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0298-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer