Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation

Abstract

The introduction of a trifluoromethyl (CF3) group can dramatically improve a compound’s biological properties. Despite the well-established importance of trifluoromethylated compounds, general methods for the trifluoromethylation of alkyl C–H bonds remain elusive. Here we report the development of a dual-catalytic C(sp3)–H trifluoromethylation through the merger of light-driven, decatungstate-catalysed hydrogen atom transfer and copper catalysis. This metallaphotoredox methodology enables the direct conversion of both strong aliphatic and benzylic C–H bonds into the corresponding C(sp3)–CF3 products in a single step using a bench-stable, commercially available trifluoromethylation reagent. The reaction requires only a single equivalent of substrate and proceeds with excellent selectivity for positions distal to unprotected amines. To demonstrate the utility of this new methodology for late-stage functionalization, we have directly derivatized a broad range of approved drugs and natural products to generate valuable trifluoromethylated analogues. Preliminary mechanistic experiments reveal that a ‘Cu–CF3’ species is formed during this process and the critical C(sp3)–CF3 bond-forming step involves the copper catalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dual decatungstate/copper metallaphotoredox catalysis enables direct C(sp3)–H trifluoromethylation.
Fig. 2: Mechanistic design for direct C(sp3)–H trifluoromethylation via decatungstate and copper catalysis.
Fig. 3: Effect of chloride anion on reaction efficiency.
Fig. 4: Extension to benzylic C–H trifluoromethylation and application to natural products and pharmaceuticals.
Fig. 5: Mechanistic investigations into the role of copper.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information.

References

  1. Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Furet, P. et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase α inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett. 23, 3741–3748 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Alonso, C., Martínez de Marigorta, E., Rubiales, G. & Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem. Rev. 115, 1847–1935 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Charpentier, J., Früh, N. & Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev. 115, 650–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Ji, Y. et al. Innate C–H trifluoromethylation of heterocycles. Proc. Natl Acad. Sci. USA 108, 14411–14415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagib, D. A. & MacMillan, D. W. C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 480, 224–228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, X. et al. Copper-catalyzed C(sp 3)–C(sp 3) bond formation using a hypervalent iodine reagent: an efficient allylic trifluoromethylation. J. Am. Chem. Soc. 133, 16410–16413 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Parsons, A. T. & Buchwald, S. L. Copper-catalyzed trifluoromethylation of unactivated olefins. Angew. Chem. Int. Ed. 50, 9120–9123 (2011).

    Article  CAS  Google Scholar 

  9. Xiao, H. et al. Copper-catalyzed late-stage benzylic C(sp 3)–H trifluoromethylation. Chem 5, 940–949 (2019).

    Article  CAS  Google Scholar 

  10. Paeth, M. et al. Copper-mediated trifluoromethylation of benzylic Csp 3–H bonds. Chem. Eur. J. 24, 11559–11563 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Guo, S., AbuSalim, D. I. & Cook, S. P. Aqueous benzylic C–H trifluoromethylation for late-stage functionalization. J. Am. Chem. Soc. 140, 12378–12382 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Z. et al. Copper‐catalyzed remote C(sp 3)−H trifluoromethylation of carboxamides and sulfonamides. Angew. Chem. Int. Ed. 58, 2510–2513 (2019).

    Article  CAS  Google Scholar 

  13. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  14. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp 3 C-H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shields, B. J. & Doyle, A. G. Direct C(sp 3)–H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, Y., Gu, Y. & Martin, R. sp 3 C–H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel catalysts. J. Am. Chem. Soc. 140, 12200–12209 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. McLean, E. B. & Lee, A.-L. Dual copper- and photoredox-catalysed reactions. Tetrahedron 74, 4881–4902 (2018).

    Article  CAS  Google Scholar 

  19. Ferraudi, G. Photochemical generation of metastable methylcopper complexes. Oxidation–reduction of methyl radicals by copper complexes. Inorg. Chem. 17, 2506–2508 (1978).

    Article  CAS  Google Scholar 

  20. Freiberg, M. & Meyerstein, D. Reactions of aliphatic free radicals with copper cations in aqueous solution. Part 2. Reactions with cupric ions: a pulse radiolysis study. J. Chem. Soc. Faraday Trans. 1, 1825–1837 (1980).

    Article  Google Scholar 

  21. Navon, N., Golub, G., Cohen, H. & Meyerstein, D. Kinetics and reaction mechanisms of copper(i) complexes with aliphatic free radicals in aqueous solutions. A pulse-radiolysis study. Organometallics 14, 5670–5676 (1995).

    Article  CAS  Google Scholar 

  22. Casitas, A. & Ribas, X. The role of organometallic copper(iii) complexes in homogeneous catalysis. Chem. Sci. 4, 2301–2318 (2013).

    Article  CAS  Google Scholar 

  23. Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp 3 C-N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kautzky, J. A., Wang, T., Evans, R. W. & MacMillan, D. W. C. Decarboxylative trifluoromethylation of aliphatic carboxylic acids. J. Am. Chem. Soc. 140, 6522–6526 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kornfilt, D. J. P. & MacMillan, D. W. C. Copper-catalyzed trifluoromethylation of alkyl bromides. J. Am. Chem. Soc. 141, 6853–6858 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duncan, D. C. & Fox, M. A. Early events in decatungstate photocatalyzed oxidations: a nanosecond laser transient absorbance reinvestigation. J. Phys. Chem. A 102, 4559–4567 (1998).

    Article  CAS  Google Scholar 

  27. De Waele, V., Poizat, O., Fagnoni, M., Bagno, A. & Ravelli, D. Unraveling the key features of the reactive state of decatungstate anion in hydrogen atom transfer (HAT) photocatalysis. ACS Catal. 6, 7174–7182 (2016).

    Article  CAS  Google Scholar 

  28. Tzirakis, M. D., Lykakis, I. N. & Orfanopoulos, M. Decatungstate as an efficient photocatalyst in organic chemistry. Chem. Soc. Rev. 38, 2609–2621 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Schultz, D. M. et al. Oxyfunctionalization of the remote C–H bonds of aliphatic amines by decatungstate photocatalysis. Angew. Chem. Int. Ed. 56, 15274–15278 (2017).

    Article  CAS  Google Scholar 

  30. Laudadio, G. et al. Selective C(sp 3)−H aerobic oxidation enabled by decatungstate photocatalysis in flow. Angew. Chem. Int. Ed. 57, 4078–4082 (2018).

    Article  CAS  Google Scholar 

  31. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. Halperin, S. D., Fan, H., Chang, S., Martin, R. E. & Britton, R. A convenient photocatalytic fluorination of unactivated C–H bonds. Angew. Chem. Int. Ed. 53, 4690–4693 (2014).

    Article  CAS  Google Scholar 

  33. Zwick, C. R. III & Renata, H. Evolution of biocatalytic and chemocatalytic C–H functionalization strategy in the synthesis of manzacidin C. J. Org. Chem. 83, 7407–7415 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Ravelli, D., Protti, S. & Fagnoni, M. Decatungstate anion for photocatalyzed ‘window ledge’ reactions. Acc. Chem. Res. 49, 2232–2242 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–713 (2018).

    Article  CAS  Google Scholar 

  36. Perry, I. B. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Song, K.-S., Liu, L. & Guo, Q.-X. Effects of α-ammonium, α-phosphonium and α-sulfonium groups on C–H bond dissociation energies. J. Org. Chem. 68, 4604–4607 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, M. & Sanford, M. S. Palladium-catalyzed, terminal-selective C(sp 3)–H oxidation of aliphatic amines. J. Am. Chem. Soc. 137, 12796–12799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Howell, J. M., Feng, K., Clark, J. R., Trzepkowski, L. J. & White, M. C. Remote oxidation of aliphatic C–H bonds in nitrogen-containing molecules. J. Am. Chem. Soc. 137, 14590–14593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, M. & Sanford, M. S. Remote C(sp 3)–H oxygenation of protonated aliphatic amines with potassium persulfate. Org. Lett. 19, 572–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan, X. et al. Silver-catalyzed decarboxylative trifluoromethylation of aliphatic carboxylic acids. J. Am. Chem. Soc. 139, 12430–12433 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Shen, H. et al. Trifluoromethylation of alkyl radicals in aqueous solution. J. Am. Chem. Soc. 139, 9843–9846 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Paeth, M. et al. Csp 3–Csp 3 bond-forming reductive elimination from well-defined copper(iii) complexes. J. Am. Chem. Soc. 141, 3153–3159 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Texier, I., Delaire, J. A. & Giannotti, C. Reactivity of the charge transfer excited state of sodium decatungstate at the nanosecond time scale. Phys. Chem. Chem. Phys. 2, 1205–1212 (2000).

    Article  CAS  Google Scholar 

  46. Khan, M. A. & Schwing-Weill, M. J. Stability and electronic spectra of the copper(ii) chloro complexes in aqueous solutions. Inorg. Chem. 15, 2202–2205 (1976).

    Article  CAS  Google Scholar 

  47. Kochi, J. K., Bemis, A. & Jenkins, C. L. Mechanism of electron transfer oxidation of alkyl radicals by copper(ii) complexes. J. Am. Chem. Soc. 90, 4616–4625 (1968).

    Article  CAS  Google Scholar 

  48. Jenkins, C. L. & Kochi, J. K. Solvolytic routes via alkylcopper intermediates in the electron-transfer oxidation of alkyl radicals. J. Am. Chem. Soc. 94, 843–855 (1972).

    Article  CAS  Google Scholar 

  49. Surry, D. S. & Buchwald, S. L. Diamine ligands in copper-catalyzed reactions. Chem. Sci. 1, 13–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Grynkiewicz, G. & Gadzikowska, M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol. Rep. 60, 439–463 (2008).

    CAS  PubMed  Google Scholar 

  51. Yarmolchuk, V. S. et al. Synthesis and characterization of β‐trifluoromethyl‐substituted pyrrolidines. Eur. J. Org. Chem. 2013, 3086–3093 (2013).

    Article  CAS  Google Scholar 

  52. Jacobs, R. T. et al. Synthesis, structure–activity relationships, and pharmacological evaluation of a series of fluorinated 3-benzyl-5-indolecarboxamides: identification of 4-[[5-[((2R)-2-methyl-4,4,4-trifluorobutyl)carbamoyl]-1-methylindol-3-yl]methyl]-3-methoxy-N-[(2-methylphenyl)sulfonyl]benzamide, a potent orally active antagonist of leukotrienes D4 and E4. J. Med. Chem. 37, 1282–1297 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Blakemore, D. C. et al. Synthesis and in vivo evaluation of 3-substituted gababutins. Bioorg. Med. Chem. Lett. 20, 362–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z. & Tang, W. Drug metabolism in drug discovery and development. Acta Pharm. Sin. B 8, 721–732 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. McLean, T. H. et al. 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J. Med. Chem. 49, 5794–5803 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Fukuyama, T. et al. Photocatalyzed site-selective C(sp 3)–H functionalization of alkylpyridines at non-benzylic positions. Org. Lett. 19, 6436–6439 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi, S., Nagayama, S. & Busujima, T. Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. J. Am. Chem. Soc. 120, 8287–8288 (1998).

    Article  CAS  Google Scholar 

  58. Ling, L., Liu, K., Li, X. & Li, Y. General reaction mode of hypervalent iodine trifluoromethylation reagent: a density functional theory study. ACS Catal. 5, 2458–2468 (2015).

    Article  CAS  Google Scholar 

  59. Nebra, N. & Grushin, V. V. Distinct mechanism of oxidative trifluoromethylation with a well-defined Cu(ii) fluoride promoter: hidden catalysis. J. Am. Chem. Soc. 136, 16998–17001 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, G. & Zhang, W. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric synthesis. Chem. Soc. Rev. 47, 1783–1810 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Institute of General Medical Sciences (NIGMS), the NIH (award no. R01 GM078201-05) to D.W.C.M., V.B. and P.J.S., and gifts from MSD, Abbvie, Pfizer and Janssen. P.J.S. and V.B. acknowledge Princeton University, E. Taylor and the Taylor family for an Edward C. Taylor Fellowship. We thank L. Wilson (Lotus Separations) for assistance with compound purification, D. Abrams for helpful discussions, I. Pelczer for assistance with NMR spectroscopy, O. Garry for synthesizing a batch of sodium decatungstate, I. Perry for providing a graphical rendering of the decatungstate anion and R. Martinie, H. Zhong and J. Eng for assistance with EPR spectroscopy. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS.

Author information

Authors and Affiliations

Authors

Contributions

P.J.S. and V.B. performed and analysed the experiments. P.J.S., V.B., D.M.S., D.A.D. and D.W.C.M. designed the experiments. Y.-h.L. and E.C.S. performed the computational analysis. P.J.S., V.B. and D.W.C.M. prepared the manuscript.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, optimization data, mechanistic studies, computational data and product characterization data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarver, P.J., Bacauanu, V., Schultz, D.M. et al. The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation. Nat. Chem. 12, 459–467 (2020). https://doi.org/10.1038/s41557-020-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0436-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing