Skip to main content

Advertisement

Log in

Interactions between iron and manganese in neurotoxicity

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The essential and naturally occurring transition metal manganese (Mn) is present in the soil, water, air, and various foods. Manganese can accumulate in the brain if the Mn intake or exposure is excessive and this can result in neurotoxic effects. Manganese is important for the proper activation of different metabolic and antioxidant enzymes. There are numerous Mn importers and exporters. However, the exact transport mechanism for Mn is not fully understood. On the other hand, iron (Fe) is another well-known essential metal, which has redox activity in addition to chemical characteristics resembling those of Mn. Existing data show that interactions occur between Fe and Mn due to certain similarities regarding their mechanisms of the absorption and the transport. It has been disclosed that Mn-specific transporters, together with Fe transporters, regulate the Mn distribution in the brain and other peripheral tissues. In PC12 cells, a significant increase of transferrin receptor (TfR) mRNA expression was linked to Mn exposure and accompanied by elevated Fe uptake. In both humans and animals, there is a strong relationship between Fe and Mn metabolism. In the present review, special attention is paid to the interaction between Mn and Fe. In particular, Fe and Mn distribution, as well as the potential molecular mechanisms of Mn-induced neurotoxicity in cases of Fe deficiency, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aisen P, Aasa R, Redfield AG (1969) The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 244(17):4628–4633

    CAS  PubMed  Google Scholar 

  • Amos-Kroohs RM, Davenport LL, Atanasova N et al (2017) Developmental manganese neurotoxicity in rats: cognitive deficits in allocentric and egocentric learning and memory. Neurotoxicol Teratol 59:16–26

    Article  CAS  PubMed  Google Scholar 

  • Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26(4–5):353–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aschner M, Vrana K, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20(2–3):173–180

    CAS  PubMed  Google Scholar 

  • Aschner JL, Anderson A, Slaughter JC et al (2015) Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am J Clin Nutr 102(6):1482–1489. https://doi.org/10.3945/ajcn.115.116285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au C, Benedetto A, Aschner M (2008) Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology 29(4):569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila DS, Puntel RL, Aschner M (2013) Manganese in health and disease. Met Ions Life Sci 13:199–227. https://doi.org/10.1007/978-94-007-7500-8_7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bannon DI, Abounader R, Lees PS, Bressler JP (2003) Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am J Physiol Cell Physiol 284(1):C44–C50

    Article  CAS  PubMed  Google Scholar 

  • Bartnikas TB (2012) Known and potential roles of transferrin in iron biology. Biometals 25(4):677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjørklund G, Aaseth J, Skalny AV et al (2017a) Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol 41:41–53

    Article  CAS  PubMed  Google Scholar 

  • Bjørklund G, Chartrand MS, Aaseth J (2017b) Manganese exposure and neurotoxic effects in children. Environ Res 155:380–384

    Article  CAS  PubMed  Google Scholar 

  • Bjørklund G, Hofer T, Nurchi VM, Aaseth J (2019) Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem 199:110717. https://doi.org/10.1016/j.jinorgbio.2019.110717

    Article  CAS  PubMed  Google Scholar 

  • Bjørklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J (2018) Metals and Parkinson's disease: mechanisms and biochemical processes. Curr Med Chem 25(19):2198–2214

    Article  CAS  PubMed  Google Scholar 

  • Bo L-Y, Li T-J, Zhao X-H (2019) Effect of Cu/Mn-fortification on in vitro activities of the peptic hydrolysate of bovine lactoferrin against human gastric cancer BGC-823 cells. Molecules 24(7):1195

    Article  CAS  PubMed Central  Google Scholar 

  • Bouchard MF, Sauvé S, Barbeau B et al (2010) Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspect 119(1):138–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brna P, Gordon K, Dooley JM, Price V (2011) Manganese toxicity in a child with iron deficiency and polycythemia. J Child Neurol 26(7):891–894

    Article  PubMed  Google Scholar 

  • Chandra SV, Shukla GS (1976) Role of iron deficiency in inducing susceptibility to manganese toxicity. Arch Toxicol 35(4):319–323

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Parmalee N, Aschner M (2014) Genetic factors and manganese-induced neurotoxicity. Front Genet 5:265. https://doi.org/10.3389/fgene.2014.00265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Chakraborty S, Mukhopadhyay S et al (2015) Manganese homeostasis in the nervous system. J Neurochem 134(4):601–610. https://doi.org/10.1111/jnc.13170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Bornhorst J, Aschner M (2018) Manganese metabolism in humans. Front Biosci 23:1655–1679

    Article  CAS  Google Scholar 

  • Chen P, Totten M, Zhang Z et al (2019) Iron and manganese-related CNS toxicity: mechanisms, diagnosis and treatment. Expert Rev Neurother 19(3):243–260. https://doi.org/10.1080/14737175.2019.1581608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan DM, Fan Q, Zou Y et al (2009) Manganese exposure among smelting workers: blood manganese–iron ratio as a novel tool for manganese exposure assessment. Biomarkers 14(1):3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Critchfield JW, Keen CL (1992) Manganese+ 2 exhibits dynamic binding to multiple ligands in human plasma. Metabolism 41(10):1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Crooks DR, Ghosh MC, Braun-Sommargren M, Rouault TA, Smith DR (2007) Manganese targets m-aconitase and activates iron regulatory protein 2 in AF5 GABAergic cells. J Neurosci Res 85(8):1797–1809

    Article  CAS  PubMed  Google Scholar 

  • Crossgrove JS, Yokel RA (2004) Manganese distribution across the blood–brain barrier III: the divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology 25(3):451–460

    Article  CAS  PubMed  Google Scholar 

  • Davidson LA, Lonnerdal B (1989) Fe-saturation and proteolysis of human lactoferrin: effect on brush-border receptor-mediated uptake of Fe and Mn. Am J Physiol Gastrointest Liver Physiol 257(6):G930–G934

  • Davidsson L, Lönnerdal B, Sandström B, Kunz C, Keen CL (1989) Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. J Nutr 119(10):1461–1464

    Article  CAS  PubMed  Google Scholar 

  • Davis CD, Greger J (1992) Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of manganese and iron status in women. Am J Clin Nutr 55(3):747–752

    Article  CAS  PubMed  Google Scholar 

  • de Water E, Proal E, Wang V et al (2018) Prenatal manganese exposure and intrinsic functional connectivity of emotional brain areas in children. Neurotoxicology 64:85–93

  • DeWitt MR, Chen P, Aschner M (2013) Manganese efflux in Parkinsonism: insights from newly characterized SLC30A10 mutations. Biochem Biophys Res Commun 432(1):1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson T, Devenyi A, Connor J (1996) Distribution of injected iron 59 and manganese 54 in hypotransferrinemic mice. J Lab Clin Med 128(3):270–278

    Article  CAS  PubMed  Google Scholar 

  • Dion L-A, Saint-Amour D, Sauvé S, Barbeau B, Mergler D, Bouchard MF (2018) Changes in water manganese levels and longitudinal assessment of intellectual function in children exposed through drinking water. Neurotoxicology 64:118–125

    Article  CAS  PubMed  Google Scholar 

  • Ellingsen DG, Haug E, Ulvik RJ, Thomassen Y (2003) Iron status in manganese alloy production workers. J Appl Toxicol Int J 23(4):239–247

    Article  CAS  Google Scholar 

  • Erikson KM, Aschner M (2019) Manganese: Its Role in Disease and Health. Essent Metals Med Ther Use Tox Metal Ions Clin 19:253

    CAS  Google Scholar 

  • Erikson KM, Syversen T, Aschner JL, Aschner M (2005) Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19(3):415–421

    Article  CAS  PubMed  Google Scholar 

  • Finley JW (1999) Manganese absorption and retention by young women is associated with serum ferritin concentration. Am J Clin Nutr 70(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Fitsanakis VA, Piccola G, Marreilha dos Santos AP, Aschner JL, Aschner M (2007) Putative proteins involved in manganese transport across the blood-brain barrier. Hum Exp Toxicol 26(4):295–302. https://doi.org/10.1177/0960327107070496

    Article  CAS  PubMed  Google Scholar 

  • Fitsanakis VA, Zhang N, Garcia S, Aschner M (2010) Manganese (Mn) and iron (Fe): interdependency of transport and regulation. Neurotox Res 18(2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Flores-Quijano ME, Vega-Sánchez R, Tolentino-Dolores MC et al (2019) Obesity is associated with changes in iron nutrition status and its homeostatic regulation in pregnancy. Nutrients 11(3):693

    Article  CAS  PubMed Central  Google Scholar 

  • Flynn MR, Susi P (2010) Manganese, iron, and total particulate exposures to welders. J Occup Environ Hyg 7(2):115–126. https://doi.org/10.1080/15459620903454600

    Article  CAS  PubMed  Google Scholar 

  • Garcia SJ, Gellein K, Syversen T, Aschner M (2006) A manganese-enhanced diet alters brain metals and transporters in the developing rat. Toxicol Sci 92(2):516–525

    Article  CAS  PubMed  Google Scholar 

  • Garrick MD, Dolan KG (2002) An expression system for a transporter of iron and other metals. Methods Mol Biol 196:147–154. https://doi.org/10.1385/1-59259-274-0:147

    Article  CAS  PubMed  Google Scholar 

  • Garrick MD, Singleton ST, Vargas F et al (2006) DMT1: which metals does it transport? Biol Res 39(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Genter MB, Kendig EL, Knutson MD (2009) Uptake of materials from the nasal cavity into the blood and brain. Ann NY Acad Sci 1170(1):623–628. https://doi.org/10.1111/j.1749-6632.2009.03877.x

    Article  PubMed  Google Scholar 

  • Gitler AD, Chesi A, Geddie ML et al (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41(3):308–315. https://doi.org/10.1038/ng.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkouvatsos K, Papanikolaou G (1820) Pantopoulos K (2012) Regulation of iron transport and the role of transferrin. Biochim Biophys Acta 3:188–202

    Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482

    Article  CAS  PubMed  Google Scholar 

  • Gunter TE, Gerstner B, Gunter KK et al (2013) Manganese transport via the transferrin mechanism. Neurotoxicology 34:118–127

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Ashwell M, Moeser A, Fry R, Knutson M, Spears J (2010) High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. J Dairy Sci 93(2):656–665

    Article  CAS  PubMed  Google Scholar 

  • Harris WR, Chen Y (1994) Electron paramagnetic resonance and difference ultraviolet studies of Mn2+ binding to serum transferrin. J Inorg Biochem 54(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Heilig EA, Thompson KJ, Molina RM, Ivanov AR, Brain JD, Wessling-Resnick M (2006) Manganese and iron transport across pulmonary epithelium. Am J Physiol Lung Cell Mol Physiol 290(6):L1247–L1259

    Article  CAS  PubMed  Google Scholar 

  • Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22(1):439–458

    Article  CAS  PubMed  Google Scholar 

  • Henn BC, Kim J, Wessling-Resnick M et al (2011) Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models. Environ Health 10(1):97

    Article  CAS  Google Scholar 

  • Jouihan HA, Cobine PA, Cooksey RC et al (2008) Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol Med 14(3–4):98

    Article  CAS  PubMed  Google Scholar 

  • Ke Y, Chang YZ, Duan XL et al (2005) Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain. Neurobiol Aging 26(5):739–748. https://doi.org/10.1016/j.neurobiolaging.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Lee B-K (2011) Iron deficiency increases blood manganese level in the Korean general population according to KNHANES 2008. Neurotoxicology 32(2):247–254

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park JK, Choi Y et al (2005) Blood manganese concentration is elevated in iron deficiency anemia patients, whereas globus pallidus signal intensity is minimally affected. Neurotoxicology 26(1):107–111

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Buckett PD, Wessling-Resnick M (2013) Absorption of manganese and iron in a mouse model of hemochromatosis. PLoS ONE 8(5):e64944

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim G, Lee HS, Seok Bang J, Kim B, Ko D, Yang M (2015) A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 33(2):229–254. https://doi.org/10.1080/10590501.2015.1030530

    Article  CAS  PubMed  Google Scholar 

  • Kwik-Uribe C, Smith DR (2006) Temporal responses in the disruption of iron regulation by manganese. J Neurosci Res 83(8):1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Kwik-Uribe CL, Reaney S, Zhu Z, Smith D (2003) Alterations in cellular IRP-dependent iron regulation by in vitro manganese exposure in undifferentiated PC12 cells. Brain Res 973(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Li GJ, Zhao Q, Zheng W (2005) Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood–CSF barrier in vitro. Toxicol Appl Pharmacol 205(2):188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Zhang L-l, Li GJ, Guo W, Liang W, Zheng W (2005) Alteration of serum concentrations of manganese, iron, ferritin, and transferrin receptor following exposure to welding fumes among career welders. Neurotoxicology 26(2):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucchini R, Placidi D, Cagna G et al (2017) Manganese and Developmental Neurotoxicity Adv Neurobiol 18:13–34. https://doi.org/10.1007/978-3-319-60189-2_2

    Article  PubMed  Google Scholar 

  • Madejczyk MS (1818) Ballatori N (2012) The iron transporter ferroportin can also function as a manganese exporter. Biochim Biophys Acta 3:651–657

    Google Scholar 

  • Meltzer HM, Brantsæter AL, Borch-Iohnsen B et al (2010) Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study. Environ Res 110(5):497–504

    Article  CAS  PubMed  Google Scholar 

  • Mena I, Marin O, Fuenzalida S, Cotzias GC (1967) Chronic manganese poisoning. Neurology 17(2):128–136

    Article  CAS  PubMed  Google Scholar 

  • Menezes-Filho JA, Novaes Cde O, Moreira JC, Sarcinelli PN, Mergler D (2011) Elevated manganese and cognitive performance in school-aged children and their mothers. Environ Res 111(1):156–163. https://doi.org/10.1016/j.envres.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CJ, Shawki A, Ganz T, Nemeth E, Mackenzie B (2013) Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am J Physiol Cell Physiol 306(5):C450–C459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshtaghi AA, Badiei A, Hasanzadeh T (1997) Role of ceruloplasmin and ethanolamine in manganese binding to human serum apo-transferrin. Iran J Sci Technol Trans B- Eng 21(2):157–168

    Google Scholar 

  • Moutafchiev D, Sirakov L, Bontchev P (1998) The competition between transferrins labeled with59Fe, 65Zn, and54Mn for the binding sites on lactating mouse mammary gland cells. Biol Trace Elem Res 61(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M (2015) Handbook on the toxicology of metals, 4th edn. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  • Oshiro S, Nozawa K, Hori M et al (2002) Modulation of iron regulatory protein-1 by various metals. Biochem Biophys Res Commun 290(1):213–218

    Article  CAS  PubMed  Google Scholar 

  • Pang L, Wang J, Huang W, Guo S (2015) A study of divalent metal transporter 1 and ferroportin 1 in brain of rats with manganese-induced parkinsonism. Chin J Ind Hyg Occup Dis (Zhonghua lao dong wei sheng zhi ye bing za zhi=Zhonghua laodong weisheng zhiyebing zazhi) 33(4):250–254

    CAS  Google Scholar 

  • Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann NY Acad Sci 1012(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Park B-Y, Chung J (2008) Effects of various metal ions on the gene expression of iron exporter ferroportin-1 in J774 macrophages. Nutr Res Pract 2(4):317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Sim C-S, Lee H, Kim Y (2013) Blood manganese concentration is elevated in infants with iron deficiency. Biol Trace Elem Res 155(2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Parkkila S, Niemelä O, Britton RS et al (2001) Molecular aspects of iron absorption and HFE expression. Gastroenterology 121(6):1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Peres TV, Schettinger MR, Chen P et al (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(1):57. https://doi.org/10.1186/s40360-016-0099-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peres TV, Horning KJ, Bornhorst J, Schwerdtle T, Bowman AB, Aschner M (2019) Small molecule modifiers of in vitro manganese transport alter toxicity in vivo. Biol Trace Elem Res 188(1):127–134

    Article  CAS  PubMed  Google Scholar 

  • Pesch B, Weiss T, Kendzia B et al (2012) Levels and predictors of airborne and internal exposure to manganese and iron among welders. J Eposure Sci Environ Epidemiol 22(3):291

    Article  CAS  Google Scholar 

  • Pfalzer AC, Bowman AB (2017) Relationships between essential manganese biology and manganese toxicity in neurological disease. Curr Environ Health Rep 4(2):223–228. https://doi.org/10.1007/s40572-017-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pivina L, Semenova Y, Doşa MD, Dauletyarova M, Bjørklund G (2019) Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J Mol Neurosci 68(1):1–10. https://doi.org/10.1007/s12031-019-01276-1

    Article  CAS  PubMed  Google Scholar 

  • Remelli M, Peana M, Medici S, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA (2016) Manganism and Parkinson's disease: Mn(II) and Zn(II) interaction with a 30-amino acid fragment. Dalton Trans 45(12):5151–5161. https://doi.org/10.1039/c6dt00184j

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Araújo CF, dos Santos NR et al (2018) Airborne manganese exposure and neurobehavior in school-aged children living near a ferro-manganese alloy plant. Environ Res 167:66–77

    Article  CAS  PubMed  Google Scholar 

  • Roth JA, Garrick MD (2003) Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 66(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Malovic E, Jin H, Kanthasamy A, Kanthasamy AG (2019) The role of manganese in neuroinflammation. Role Inflamm Environ Neurotox 3:121

    Article  Google Scholar 

  • Seo YA, Wessling-Resnick M (2015) Ferroportin deficiency impairs manganese metabolism in flatiron mice. FASEB J 29(7):2726–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo YA, Elkhader JA, Wessling-Resnick M (2016) Distribution of manganese and other biometals in flatiron mice. Biometals 29(1):147–155

    Article  CAS  PubMed  Google Scholar 

  • Smith EA, Newland P, Bestwick KG, Ahmed N (2013) Increased whole blood manganese concentrations observed in children with iron deficiency anaemia. J Trace Elem Med Biol 27(1):65–69

    Article  CAS  PubMed  Google Scholar 

  • Suárez N, Eriksson H (1993) Receptor-mediated endocytosis of a manganese complex of transferrin into neuroblastoma (SHSY5Y) cells in culture. J Neurochem 61(1):127–131

    Article  PubMed  Google Scholar 

  • Thompson K, Molina R, Donaghey T, Brain JD, Wessling-Resnick M (2006) The influence of high iron diet on rat lung manganese absorption. Toxicol Appl Pharmacol 210(1–2):17–23

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Molina RM, Donaghey T, Schwob JE, Brain JD, Wessling-Resnick M (2007) Olfactory uptake of manganese requires DMT1 and is enhanced by anemia. FASEB J 21(1):223–230

    Article  CAS  PubMed  Google Scholar 

  • Vayenas D, Repanti M, Vassilopoulos A, Papanastasiou D (1998) Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain. Int J Clin Lab Res 28(3):183–186

    Article  CAS  PubMed  Google Scholar 

  • Venkataramani V, Doeppner TR, Willkommen D et al (2018) Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and H-Ferritin. J Neurochem 147(6):831–848. https://doi.org/10.1111/jnc.14580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent JB (1820) Love S (2012) The binding and transport of alternative metals by transferrin. Biochim Biophys Acta 3:362–378

    Google Scholar 

  • Wang X, Li GJ, Zheng W (2006) Upregulation of DMT1 expression in choroidal epithelia of the blood–CSF barrier following manganese exposure in vitro. Brain Res 1097(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J (2017) Influence of iron metabolism on manganese transport and toxicity. Metallomics 9(8):1028–1046

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Jiang H, Lee ESY et al (2010) Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. J Neurochem 112(5):1190–1198

    Article  CAS  PubMed  Google Scholar 

  • Zaloglu N, Yildirim G, Bastug M, Koc E, Ficicilar H, Sayal A (2002) High dosage of manganese chloride application and iron zinc copper status in rats. Trace Elem Electrolytes 19(3):138–142

    CAS  Google Scholar 

  • Zhang G, Liu D, He P (1995) Effects of manganese on learning abilities in school children. Zhonghua yu fang yi xue za zhi [Chin J Prev Med] 29(3):156–158

    CAS  Google Scholar 

  • Zheng W, Zhao Q (2001) Iron overload following manganese exposure in cultured neuronal, but not neuroglial cells. Brain Res 897(1–2):175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Zhao Q, Slavkovich V, Aschner M, Graziano JH (1999) Alteration of iron homeostasis following chronic exposure to manganese in rats1. Brain Res 833(1):125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoroddu MA, Medici S, Ledda A, Nurchi VM, Lachowicz JI, Peana M (2014) Toxicity of nanoparticles. Curr Med Chem 21(33):3837–3853. https://doi.org/10.2174/0929867321666140601162314

    Article  CAS  PubMed  Google Scholar 

  • Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for humans: a brief overview. J Inorg Biochem 195:120–129. https://doi.org/10.1016/j.jinorgbio.2019.03.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Bjørklund.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjørklund, G., Dadar, M., Peana, M. et al. Interactions between iron and manganese in neurotoxicity. Arch Toxicol 94, 725–734 (2020). https://doi.org/10.1007/s00204-020-02652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02652-2

Keywords

Navigation