Skip to main content
Log in

Photoinduced reactivity and cytotoxicity of a series of zinc(II)–flavonolate derivative complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of Zn(II)-based complexes as photoinduced carbon-monoxide-releasing molecules (photoCORMs), viz. (L)Zn(R)]ClO4 with L = tris(pyridine-2-ylmethyl)amine (TPA), N,N-((5-estermethyl-2-pyridyl)methyl)-bis(2-pyridylmethyl) amine (5-COOCH3TPA), N,N-(bis(5-estermethyl-2-pyridyl)methyl)-(2-pyridylmethyl) amine [(5-COOCH3)2TPA], or N,N-((6-estermethyl-2-pyridyl)methyl)-bis(2-pyridylmethyl) amine (6-COOCH3TPA) and R = 4-dimethylaminoflavonol [4-N(Me)2FLH], 4-diethylaminoflavonol [4-N(Et)2FLH], or 4-methoxyflavonol (4-MeOFLH), have been prepared and characterized. When dissolved in CH3CN or 1:1 H2O:dimethylsulfoxide (DMSO) in presence of O2, visible light (λmax ranging from 417 to 462 nm) induced dioxygenase-type reactions to release CO quantitatively from these complexes. Moreover, the intracellular uptake and CO releasing reactivity were confirmed by the change of their fluorescent properties observed under fluorescence microscopy. The cytotoxicity of the complexes demonstrates that they exhibit good biocompatibility in the concentration range from 1 to 50 μM. The solid complexes are stable in air for more than 60 days, and their aqueous solutions are also stable for 96 h under anaerobic or dark condition. The remarkable stability and biocompatibility of the complexes are indispensable properties for use in pharmaceutical chemistry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mann BE (2012) Organometallics 31(16):5728–5735

    Article  CAS  Google Scholar 

  2. Tenhunen R, Marver HS, Schmid R (1968) Proc Natl Acad Sci USA 61(2):748–755

    Article  CAS  Google Scholar 

  3. Yachie A, Niida Y, Wada T (1999) J Clin Invest 103(1):129

    Article  CAS  Google Scholar 

  4. Chance B, Erecinska M, Wagner M (1970) Ann N Y Acad Sci 174:193–204

    Article  CAS  Google Scholar 

  5. Steiger C, Hermann C, Meinel L (2016) Eur J Pharm Biopharm 118:3–12

    Article  Google Scholar 

  6. Ji X, Damera K, Zheng Y (2016) J Pharm Sci 105(2):406–416

    Article  CAS  Google Scholar 

  7. Romao CC, Blättler WA, Seixas JD (2012) Chem Soc Rev 41(9):3571–3583

    Article  CAS  Google Scholar 

  8. Hasegawa U, Van Der Vlies AJ, Simeoni E (2010) J Am Chem Soc 132(51):18273–18280

    Article  CAS  Google Scholar 

  9. Matson JB, Webber MJ, Tamboli VK (2012) Soft Matter 8(25):6689–6692

    Article  CAS  Google Scholar 

  10. Kautz AC, Kunz PC, Janiak C (2016) Dalton Trans 45:18045–18063

    Article  CAS  Google Scholar 

  11. Motterlini R, Clark JE, Foresti R (2002) Circ Res 90(2):e17–e24

    Article  CAS  Google Scholar 

  12. Clark JE, Naughton P, Shurey S (2003) Circ Res 93(2):e2–e8

    Article  CAS  Google Scholar 

  13. Southam HM (2018) Redox Biol 18:114–123

    Article  CAS  Google Scholar 

  14. Steiger C, Hermann C, Meinel L (2017) Eur J Pharm Biopharm 118:3–12

    Article  CAS  Google Scholar 

  15. Slanina T, Sebej P (2018) Photochem Photobiol Sci 17:692–710

    Article  CAS  Google Scholar 

  16. Kourti M, Jiang WG, Cai J (2017) Oxid Med Cell Longev 2017:9326454

    Article  Google Scholar 

  17. Wright MA, Wright JA (2016) Dalton Trans 45:6801–6811

    Article  CAS  Google Scholar 

  18. Romanski S, Kraus B, Schatzschneider U, Neudorfl JM, Amslinger S, Schmalz HG (2011) Angew Chem Int Ed 50:2392–2396

    Article  CAS  Google Scholar 

  19. Kunz PC, Meyer H, Barthel J, Sollazzo S, Schmidt AM, Janiak C (2013) Chem Commun 49:4896–4898

    Article  CAS  Google Scholar 

  20. Soboleva T, Berreau LM (2019) Molecules 24(7):1252

    Article  Google Scholar 

  21. Friis SD, Taaning RH, Lindhardt AT (2011) J Am Chem Soc 133(45):18114–18117

    Article  CAS  Google Scholar 

  22. Pap JS, Kaizer J, Speier G (2010) Coordin Chem Rev 254(7):781–793

    Article  CAS  Google Scholar 

  23. Sun YJ, Huang QQ, Zhang JJ (2014) Dalton Trans 43(17):6480–6489

    Article  CAS  Google Scholar 

  24. Grubel K, Laughlin BJ, Maltais TR (2011) Chem Commun 47(37):10431–10433

    Article  CAS  Google Scholar 

  25. Grubel K, Marts R, Greer SM (2012) Eur J Inorg Chem 29:4750–4757

    Article  Google Scholar 

  26. Anderson SN, Noble M, Grubel KJ (2014) Coord Chem 67(23–24):4061–4075

    Article  CAS  Google Scholar 

  27. Qin CX, Chen X, Hughes RA (2008) J Med Chem 51(6):1874–1884

    Article  CAS  Google Scholar 

  28. Popova M, Soboleva T, Ayad S (2018) J Am Chem Soc 140(30):9721–9729

    Article  CAS  Google Scholar 

  29. Soboleva T, Esquer HJ, Anderson SN (2018) ACS Chem Biol 13:2220–2228

    Article  CAS  Google Scholar 

  30. Humphreys KJ, Karlin KD, Rokita SE (2002) J Am Chem Soc 124(21):6009–6019

    Article  CAS  Google Scholar 

  31. Kotani H, Kaida S, Ishizuka T (2015) Chem Sci 6(2):945–955

    Article  CAS  Google Scholar 

  32. Wolsey WC (1973) J Chem Educ 50:A335–A337

    Article  CAS  Google Scholar 

  33. Pierri AE, Pallaoro A, Wu G (2012) J Am Chem Soc 134:18197

    Article  CAS  Google Scholar 

  34. Allpress CJ, Grubel K, Szajna-Fuller E (2012) J Am Chem Soc 135(2):659–668

    Article  Google Scholar 

  35. Sun YJ, Huang QQ, Tano T (2013) Inorg Chem 52(19):10936–10948

    Article  CAS  Google Scholar 

  36. Antony LAP, Slanina T, Sebej P, Solomek T, Klan P (2013) Org Lett 15:4552–4555

    Article  CAS  Google Scholar 

  37. Anderson SN, Michael TL, Lisa MB (2016) Dalton Trans 45(37):14570–14580

    Article  CAS  Google Scholar 

  38. Sun YJ, Huang QQ, Li P, Zhang JJ (2015) Dalton Trans 44(31):13926–13938

    Article  CAS  Google Scholar 

  39. Han X, Kumar MR, Hoogerbrugge A, Klausmeyer KK, Ghimire MM, Harris LM, Farmer PJ (2018) Inorg Chem 57(5):2416–2424

    Article  CAS  Google Scholar 

  40. Winkel-Shirley B (2001) Plant Physiol 126(2):485–493

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (no. 21401149) and the Key Laboratory Research and Establish Program of Shaanxi Education Section (no. 17JS130) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Lan Zhang or Yan-Ling Ma.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3071 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, SY., Su, YY., Qi, X. et al. Photoinduced reactivity and cytotoxicity of a series of zinc(II)–flavonolate derivative complexes. Transit Met Chem 45, 253–266 (2020). https://doi.org/10.1007/s11243-020-00377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00377-w

Navigation