Skip to main content
Log in

Effect of austempering time on microstructure and properties of a low-carbon bainite steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature. Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation BRF = 1− exp(−0.0499 × t0.7616) for bainite reaction at 350°C was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed., IOM Communications Ltd. London, 2001.

    Google Scholar 

  2. H.I. Aaronson, T. Furuhara, J.M. Rigsbee, W.T. Reynolds, and J.M. Howe, Crystallographic and mechanistic aspects of growth by shear and by diffusional processes, Metall. Trans. A, 21(1990), No. 9, p. 2369.

    Article  Google Scholar 

  3. Z. Lawrynowicz and A. Barbacki, Features of bainite transformation in steels, Adv. Mater. Sci., 2(2002), No. 1, p. 5.

    Google Scholar 

  4. Y. Ohmori, Bainite transformations in extremely low carbon steels, ISIJ Int., 35(1995), No. 8, p. 962.

    Article  CAS  Google Scholar 

  5. H.K.D.H. Bhadeshia, The bainite transformation: Uneesolved issues, Mater. Sci. Eng. A, 273–275(1999), p. 58.

    Article  Google Scholar 

  6. M. Hillert, Paradigm shift for bainite, Scripta Mater., 47(2002), No. 3, p. 175.

    Article  CAS  Google Scholar 

  7. A. Borgenstam, M. Hillert, and J. Ågren, Metallographic evidence of carbon diffusion in the growth of bainite, Acta Mater., 57(2009), No. 11, p. 3242.

    Article  CAS  Google Scholar 

  8. J.Y. Tian, G. Xu, Z.Y. Jiang, X.L. Wan, H.J Hu, and Q. Yuan, Transformation behavior and properties of carbidefree bainite steels with different Si contents, Steel Res. Int., 90(2019), No. 3, art No. 1800474.

    Google Scholar 

  9. Z.S. Yao, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, and M.X. Zhou, Effect of Ni and Cr addition on transformation and properties of low-carbon bainitic steels, Trans. Indian Inst. Met., 72(2019), No. 5, p. 1167.

    Article  CAS  Google Scholar 

  10. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, and Z.L. Xue, Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels, J. Iron Steel Res. Int., 26(2019), No. 8, p. 846.

    Article  CAS  Google Scholar 

  11. H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu, The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels, Mater. Des., 84(2015), p. 95.

    Article  CAS  Google Scholar 

  12. X.D. Wang, B.X. Huang, L. Wang, and Y.H. Rong, Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels, Metall Mater. Trans. A, 39(2008), No. 1, p. 1.

    Article  CAS  Google Scholar 

  13. T. Heller and A. Nuss, Effect of alloying elements on microstructure and mechanical properties of hot rolled multiphase steels, Ironmaking Steelmaking, 32(2005), No. 4, p. 303.

    Article  CAS  Google Scholar 

  14. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, and X.L. Wan, The Effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels, Metals, 7(2017), No. 2, p. 40.

    Article  CAS  Google Scholar 

  15. Z.N. Yang, C.H. Chu, F. Jiang, Y.M. Qin, X.Y. Long, S.L. Wang, D. Chen, and F.C. Zhang, Accelerating nano-bainite transformation based on a new constructed microstructural predicting model, Mater. Sci. Eng. A, 748(2019), p. 16.

    Article  CAS  Google Scholar 

  16. G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, and B.Z. Bai, Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: the great potential of ultrafine filmy retained austenite, Acta Mater., 76(2014), p. 425.

    Article  CAS  Google Scholar 

  17. J.Y. Tian, G. Xu, M.X. Zhou, and H.J. Hu, Refined bainite microstructure and mechanical properties of a high-strength low-carbon bainitic steel treated by austempering below and above Ms, Steel Res. Int., 89(2018), No. 4, art No. 1700469.

    Google Scholar 

  18. Y.Y. Huang, Q.G. Li, X.F. Huang, and W.G. Huang, Effect of bainitic isothermal transformation plus Q&P process on the microstructure and mechanical properties of 0.2C bainitic steel, Mater. Sci. Eng. A, 678(2016), p. 339.

    Article  CAS  Google Scholar 

  19. X.F Huang, W.L. Liu, Y.Y. Huang, H. Chen, and W.G. Huang, Effect of a quenching-long partitioning treatment on the microstructure and mechanical properties of a 0.2C% bainitic steel, J. Mater. Process. Technol., 222(2015), p. 181.

    Article  CAS  Google Scholar 

  20. Q.G. Li, X.F. Huang, and W.G. Huang, Fatigue property and microstructure deformation behavior of multiphase microstructure in a medium-carbon bainite steel under rolling contact condition, Int. J. Fatigue, 125(2019), p. 381.

    Article  CAS  Google Scholar 

  21. H.J. Hu, G. Xu, M.X. Zhou, and Q. Yuan, New insights to the promoted bainitic transformation in prior deformed austenite in a Fe-C-Mn-Si alloy, Met. Mater. Int., 23(2017), No. 2, p. 233.

    Article  CAS  Google Scholar 

  22. W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, and S.Y. Zhang, Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel, Acta Mater., 61(2013), No. 11, p. 4142.

    Article  CAS  Google Scholar 

  23. J.G. He, A.M. Zhao, C. Zhi, and H.L. Fan, Acceleration of nanobainite transformation by multi-step ausforming process, Scripta Mater., 107(2015), p. 71.

    Article  CAS  Google Scholar 

  24. H.J. Hu, G. Xu, F.Q. Dai, J.Y. Tian, and G.H. Chen, Critical ausforming temperature to promote isothermal bainitic transformation in prior-deformed austenite, Mater. Sci. Technol., 35(2019), No. 4, p. 420.

    Article  CAS  Google Scholar 

  25. H. Zou, H.J. Hu, G. Xu, Z.L. Xiong, and F.Q. Dai, Combined effects of deformation and undercooling on isothermal bainitic transformation in an Fe-C-Mn-Si alloy, Metals, 9(2019), No. 2, p. 138.

    Article  CAS  Google Scholar 

  26. L. Morales-Rivas, H.W. Yen, B.M. Huang, M. Kuntz, F.G. Caballero, J.R. Yang, and C. Garcia-Mateo, Tensile response of two nanoscale bainite composite-like structures, JOM, 67(2015), No. 10, p. 2223.

    Article  CAS  Google Scholar 

  27. L.J. Zhao, L.H. Qian, J.Y. Meng, Z. Qian, and F.C. Zhang, Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels, Scripta Mater., 112(2016), p. 96.

    Article  CAS  Google Scholar 

  28. Z.W. Hu, G. Xu, C. Zhang, and H.J. Hu, Research on continuous cooling transformation curve of a C-Si-Mn steel, Appl. Mech. Mater., 556–562(2014), p. 404.

    Article  CAS  Google Scholar 

  29. C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong, Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel, Mater. Sci. Eng. A, 527(2010), No. 15, p. 3442.

    Article  CAS  Google Scholar 

  30. L.I. Lin, B.C.D. Cooman, P. Wollants, H.E. Yanlin, and X. Zhou, Effect of aluminum and silicon on transformation induced plasticity of the TRIP steel, Mater. Sci. Technol., 20(2004), No. 2, p. 135.

    Google Scholar 

  31. W.C. Jeong, Effect of silicon content and annealing temperature on formation of retained austenite and mechanical properties in multi-phase steels, Met. Mater. Int., 9(2003), No. 2, p. 179.

    Article  CAS  Google Scholar 

  32. K.I. Sugimoto, Fracture strength and toughness of ultra high strength TRIP aided steels, Mater. Sci. Technol., 25(2009), No. 9, p. 1108.

    Article  CAS  Google Scholar 

  33. P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag, and F. Delannay, Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention, Mater. Sci. Eng. A, 273–275(1999), p. 475.

    Article  Google Scholar 

  34. M. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia, Three-dimensional atom probe analysis of carbon distribution in low-temperature bainite, Scripta Mater., 50(2004), No. 10, p. 1277.

    Article  CAS  Google Scholar 

  35. E.V. Pereloma, I.B. Timokhina, M.K. Miller, and P.D. Hodgson, Three-dimensional atom probe analysis of solute distribution in thermomechanically processed trip steels, Acta Mater., 55(2007), No. 8, p. 2587.

    Article  CAS  Google Scholar 

  36. F.G. Caballero, M.K. Miller, A.J. Clarke, and C. Garcia-Mateo, Examination of carbon partitioning into austenite during tempering of bainite, Scripta Mater., 63(2010), No. 4, p. 442.

    Article  CAS  Google Scholar 

  37. I.B. Timokhina, X.Y. Xiong, H. Beladi, S. Mukherjee, and P.D. Hodgson, Three-dimensional atomic scale analysis of microstructures formed in high strength steels, Mater. Sci. Technol., 27(2011), No. 4, p. 739.

    Article  CAS  Google Scholar 

  38. S.N. Prasad, A. Saxena, M.M.S. Sodhi, and P.N. Tripathi, Influence of different heat treatment parameters on microstructure and mechanical properties of C-Mn strapping quality steels, Mater. Sci. Eng. A, 476(2008), No. 1–2, p. 126.

    Article  CAS  Google Scholar 

  39. F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, and C.G.D. Andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Mater., 57(2009), No. 1, p. 8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (NSFC) (Nos. 51874216 and 51704217) and the Major Projects of Technology Innovation of Hubei Province, China (No. 2017AAA116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Xu, G., Tian, Jy. et al. Effect of austempering time on microstructure and properties of a low-carbon bainite steel. Int J Miner Metall Mater 27, 340–346 (2020). https://doi.org/10.1007/s12613-019-1881-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1881-y

Keywords

Navigation