Skip to main content
Log in

Study on Microstructure and Mechanical Properties of the Al–25Cr–5Si (at%) Alloy Powder Using Gas-Atomization and SPS Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In order to investigate the microstructure and mechanical properties on Al–25Cr–5Si (at%) alloy, a mixed powder with pure elements and an alloy powder using a gas atomization process were used. Fine and high purity Al–25Cr–5Si (at%) alloy powder was successfully prepared by gas atomization and densified using a spark plasma sintering (SPS) process. The overall powder size distribution of the mixed Al, Cr, and Si elemental powders was in the range of 10–15 μm. The atomized Al–Cr–Si alloy powder was fine and spherical in morphology and difficult to be formed by intermetallic formation. Densification was clearly confirmed at 1000 °C, with almost isolated pores formed, by clear removal of pores between particles, deformation of particles, an increase in the number of contacts, and a change in size between particles. As a result of XRD analysis of the sintered compacts, single phase was observed using the mixed powder, but the compact using gas atomization remained the alloy phase even at the process temperature. The Vickers hardness of the compacts by mixed powder was observed at 59.70 Hv and the compact using gas atomized powders on the temperature 1000 °C of the Vickers hardness increased to 702.6 Hv. The compressive yield strength of the compact with mixed powder was 195.24 MPa and the compressive strength of the compact with gas atomized powder increased to 802.07 MPa. It is considered not to be decomposed by the AlCrSi, Al13Cr4Si4 and Al8Cr5 phases sintering process, resulting from the improvement of mechanical properties.

Graphic Abstract

We have obtained a fine and high purity Al–25Cr–5Si (at%) alloy powder, which has been successfully manufactured by gas atomization. The atomized Al–Cr–Si alloy powder was fine and spherical in morphology and difficult to be formed by intermetallic formation. Alloy powders have been densified using a pulsed current-activated sintering (PCAS) process. The Vickers hardness of the compacts by mixed powder was observed at 59.70 Hv and the compact using gas atomized powders on the temperature 1000 ℃ of the Vickers hardness increased to 702.6 Hv. The compressive yield strength of the compact with mixed powder was 195.24 MPa and the compressive strength of the compact with gas atomized powder increased to 802.07 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.T. Kim, H.J. Kim, H.J. Park, Y.S. Kim, Y.J. Hwang, Y.B. Jeong, J.Y. Park, J.M. Park, B. Sarac, W.M. Wang, J. Eckert, K.B. Kim, Sci Rep. 8, 2120 (2018)

    Article  Google Scholar 

  2. J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, K.B. Kim, J. Alloys Compd. 749, 205–210 (2018)

    Article  CAS  Google Scholar 

  3. J.T. Kim, S.H. Hong, H.J. Park, Y.S. Kim, J.Y. Suh, J.M. Park, T. Maity, J. Eckert, K.B. Kim, Sci Rep. 7, 39959 (2017)

    Article  CAS  Google Scholar 

  4. J.T. Kim, S.W. Lee, S.H. Hong, H.J. Park, J.Y. Park, N.S. Lee, Y.H. Seo, W.M. Wang, J.M. Park, K.B. Kim, Mater. Des. 92, 1038–1045 (2016)

    Article  CAS  Google Scholar 

  5. L. Kloc, S. Spigarelli, E. Cerri, E. Evangelista, T.G. Langdon, Met. Mater. Trans. A 27A, 3871–3879 (1996)

    Article  CAS  Google Scholar 

  6. L.G. Hou, C. Cui, J.S. Zhang, Mater. Sci. Eng., A A527, 6400–6412 (2010)

    Article  CAS  Google Scholar 

  7. L.G. Hou, H. Cui, Y.H. Cai, J.S. Zhang, Mater. Sci. Eng., A A527, 85–92 (2009)

    Article  CAS  Google Scholar 

  8. A.P. Hekimoğlu, M. Çalış, G. Ayata, Met. Mater. Int. 25, 1488–1499 (2019)

    Article  Google Scholar 

  9. S. Romankov, Y.C. Park, I.V. Shchetinin, J. Alloys Compd. 653, 175–186 (2015)

    Article  CAS  Google Scholar 

  10. F. Saba, E. Kabiri, J.V. Khaki, M.H. Sabzevar, Powder Technol. 288, 76–86 (2016)

    Article  CAS  Google Scholar 

  11. M. Mohammadnezhad, M. Shamanian, M.H. Enayati, M. Salehi, A. Hoseynian, Surf. Coat. Technol. 238, 180–187 (2014)

    Article  CAS  Google Scholar 

  12. V. Zadorozhnyy, S. Kaloshkin, V. Tcherdyntsev, M. Gorshenkov, A. Komissarov, M. Zadorozhnyy, J. Alloys Compd. 586, S373–S376 (2014)

    Article  CAS  Google Scholar 

  13. J. Zhang, X. Feng, Y. Shen, C. Chen, C. Duan, Int. J. Mater. Res. 107, 544–552 (2016)

    Article  CAS  Google Scholar 

  14. C. Chen, X. Feng, Y. Shen, Mater. Charact. 120, 97–108 (2016)

    Article  CAS  Google Scholar 

  15. R.S. Mishra, T.R. Bieler, A.K. Mukherjee, Acta Mater. 43, 877–891 (1995)

    Article  CAS  Google Scholar 

  16. K.S. Kim, S.Y. Sung, B.S. Han, J.C. Park, K.A. Lee, Met. Mater. Int. 21, 1000–1005 (2015)

    Article  CAS  Google Scholar 

  17. M. Khan, M. Zulfaqar, F. Ali, T. Subhani, Met. Mater. Int. 23, 813–822 (2017)

    Article  CAS  Google Scholar 

  18. Q. Wu, R. Yang, Y. Wu, S. Li, Y. Ma, S. Gong, Prog. Nat. Sci. 21, 496–505 (2011)

    Article  Google Scholar 

  19. T.K. Lee, M. Yamasaki, Y. Kawamura, J.B. Go, S.H. Park, Met. Mater. Int. 25, 372–380 (2019)

    Article  CAS  Google Scholar 

  20. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371–392 (2016)

    Article  CAS  Google Scholar 

  21. M. Behúlová, J. Behúlová, P. Grgač, J. Alloys Compd. 615, S217–S223 (2014)

    Article  Google Scholar 

  22. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. 63, 127–287 (2009)

    Article  Google Scholar 

  23. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41, 763–777 (2006)

    Article  CAS  Google Scholar 

  24. R. Chaim, Mater. Sci. Eng., A 443, 25–32 (2007)

    Article  Google Scholar 

  25. W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, Z.A. Munir, Mater. Sci. Eng. 394, 132–138 (2005)

    Article  Google Scholar 

  26. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Mater. Sci. Eng. 394, 139–148 (2005)

    Article  Google Scholar 

  27. U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, Mater. Sci. Eng. 407, 24–30 (2005)

    Article  Google Scholar 

  28. J.H. Lee, I.H. Oh, J.H. Jang, J.H. Kim, S. K. Hong, H.K. Park, Met. Mater. Int. (2020)

  29. F. Weitzer, H.L. Chen, Y. Du, J.C. Schuster, Intermetallics 14, 224–226 (2006)

    Article  CAS  Google Scholar 

  30. H.L. Chen, F. Weitzer, J.C. Schuster, Y. Du, H.H. Xu, J. Alloys Compd. 436, 313–318 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been conducted with the support of the Korea Institute of Industrial Technology—Production Technology Industry Leading Core Technology Development Project as the “Development of a on-site facility attached cryogenic machining integrated system (KITECH EO-20-0009)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YH., Yoo, HS., Lee, JH. et al. Study on Microstructure and Mechanical Properties of the Al–25Cr–5Si (at%) Alloy Powder Using Gas-Atomization and SPS Process. Met. Mater. Int. 27, 2014–2022 (2021). https://doi.org/10.1007/s12540-020-00674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00674-0

Keywords

Navigation