Skip to main content
Log in

Star-shaped polylactic acid-based triazine dendrimers: the catalyst type and time factors influence on polylactic acid molecular weight

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Nowadays, extensive environmental problems due to the use of synthetic polymers have provoked efforts for their replacement with biopolymers as the most important research priorities. Polylactic acid (PLA) is one of the well-known biodegradable biopolymers. In this work, for the first time, PLA was modified with hydrophilic triazine-based dendrimers to obtain PLA with improved hydrophilic properties. In this regard, at first, dl-lactic acid (DLLA) was polymerized through the melt polycondensation to obtain poly-dl-lactic acid (PDLLA). The effects of reaction time and catalyst types on the molecular weight of the PDLLA were investigated. Also, the thermal behavior of PDLLAs with different molecular weights was evaluated using differential scanning calorimetry (DSC) technique. The obtained results from the DSC analysis showed that the PDLLA with higher molecular weight has a higher glass transition temperature (Tg) and melting point (Tm). In the following, various generations (G) of the triazine-based dendrimers were synthesized. To increase the hydrophilicity of the prepared PDLLA, chemical modification of PDLLA with the different generations of triazine-based dendrimer (G1, G1.5 and G2) was performed. Due to the modification of PDLLA with dendrimers, the number of functional groups and hydrophilicity of PDLLA increased. Based on the obtained results, it is expected that the prepared systems could be a good and promising candidate for the production of biocompatible plastics with more hydrolytic degradation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Tadahisa I (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215

    Article  CAS  Google Scholar 

  2. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  PubMed  Google Scholar 

  3. Harding KG, Gounden T, Pretorius S (2017) “Biodegradable” plastics: amyth of marketing?. Proc Manuf 7:106–110

    Google Scholar 

  4. Namazi H, Dadkhah A, Mosadegh M (2012) New biopolymer nanocomposite of starch-graft polystyrene/montmorillonite clay prepared through emulsion polymerization method. J Polym Environ 20:794–800

    Article  CAS  Google Scholar 

  5. Ghaderi A, Abbasian M, Rahmani S, Entezami A, Namazi H, Baharvand HE (2011) Preparation of anion-exchange resin based on styrene-divinylbenzene copolymer obtained by suspension polymerization method. Polym-Plast Technol Eng 50:1606–1612

    Article  CAS  Google Scholar 

  6. Namazi H, Mosadegh M (2011) Preparation and properties of starch/nanosilicate layer/polycaprolactone composites. J Polym Environ 19:980–987

    Article  CAS  Google Scholar 

  7. Namvari M, Namazi H (2014) Sweet graphene. I.Toward hydrophilic graphene nanosheets via click grafting alkyne-saccharides onto azide-functionalized graphene oxide. Carbohydr Res 396:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Chaiwutthinan P, Pimpan V, Chuayjuljit S, Leejarkpai T (2015) Biodegradable plastics prepared from poly(lactic acid), poly(butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. J Polym Environ 23:114–125

    Article  CAS  Google Scholar 

  9. Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H (2018) Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int J Biolog Macromol 119:588–596

    Article  CAS  Google Scholar 

  10. Pooresmaeil M, Namazi H (2018) β-Cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: synthesis and characterization. Mater Chem Phys 218:62–69

    Article  CAS  Google Scholar 

  11. Pooresmaeil M, Behzadi Nia S, Namazi H (2019) Green encapsulation of LDH(Zn/Al)-5-Fu with carboxymethyl cellulose biopolymer; new nanovehicle for oral colorectal cancer treatment. Int J Biolog Macromol 139:994–1001

    Article  CAS  Google Scholar 

  12. Pooresmaeil M, Namazi H (2020) Chapter 14—application of polysaccharide-based hydrogels for water treatments. In: Chen Y (ed) Hydrogels based on natural polymers. Elsevier, Amsterdam, pp 411–455

    Chapter  Google Scholar 

  13. Nasiri Oskooie M, Pooresmaeil M, Namazi H (2019) Design and synthesis of vinylic glycomonomers and glycopolymer based on α-d-glucofuranose moieties. J Polym Res 26:268

    Article  CAS  Google Scholar 

  14. Flieger M, Kantorová M, Prell A, Řezanka T, Votruba J (2003) Biodegradable plastics from renewable sources. Folia Microbiol 48:27–44

    Article  CAS  Google Scholar 

  15. Bhullar NK, Kumari K, Sud D (2019) Semi-interpenetrating networks of biopolymer chitosan/acrylic acid and thiourea hydrogels: synthesis, characterization and their potential for removal of cadmium. Iran Polym J 28:225–236

    Article  CAS  Google Scholar 

  16. Bhullar N, Kumari K, Sud D (2018) A biopolymer-based composite hydrogel for rhodamine 6G dye removal: its synthesis, adsorption isotherms and kinetics. Iran Polym J 27:527–535

    Article  CAS  Google Scholar 

  17. Kumar S, Tadahisa I (2008) Sustainability of biobased and biodegradable plastics. Clean 36:433–442

    Google Scholar 

  18. Namazi H, Belali S (2016) Starch-g-lactic acid/montmorillonite nanocomposite: synthesis, characterization and controlled drug release study. Starch- Stärke 68:177–187

    Article  CAS  Google Scholar 

  19. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  20. Li Y, Zhen W (2018) Preparation, structure and performance of poly(lactic acid)/poly(lactic acid)-γ-cyclodextrin inclusion complex-poly(glycidyl methacrylate) composites. Macromol Res 26:215–225

    Article  CAS  Google Scholar 

  21. Shen T, Lu M, Zhou D, Liang L (2012) Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly(lactic acid)/poly(ethylene glycol) blends. Iran Polym J 21:317–323

    Article  CAS  Google Scholar 

  22. Sheth M, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl PolymSci 66:1495–1505

    Article  CAS  Google Scholar 

  23. Il MS, Woo LC, Masatoshi M, Yoshiharu K (2000) Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(L-lactic acid). J Polym Sci Part A: Polym Chem 38:1673–1679

    Article  Google Scholar 

  24. Majid J, Arab TE, Muhammad I, Muriel J, Stéphane D (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehens Rev Food Sci Food Safe 9:552–571

    Article  CAS  Google Scholar 

  25. Fathi F, Dadkhah A, Namazi H (2014) Characterisation and surface chemical modification of starch nanoparticles with lactid through ring opening polymerisation. Int J Nanopart 7:37–48

    Article  CAS  Google Scholar 

  26. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  PubMed  Google Scholar 

  27. Kim HY, Kim SC (2011) Synthesis and properties of poly(L-lactide)-polyether-poly(L-lactide) triblock copolymers. Macromol Res 19:448–452

    Article  CAS  Google Scholar 

  28. Hartmann M (1998) High molecular weight polylactic acid polymers. In: Biopolymers from renewable resources. Springer, Berlin, Heidelberg, pp 367–411

  29. Elsawy MA, Kim K-H, Park J-W, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352

    Article  CAS  Google Scholar 

  30. Sun H, Wang Y, Zhang K, Zhong Y, Lin L, Zhou H, Chen L, Yuzhong Zhang Y (2017) Hydrophilic and hydrophobic poly(l-lactic acid) films by building porous topological surfaces. J Appl Polym Sci 134

  31. Lee SH, Yeo SY (2016) Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis. Fiber Polym 17:1154–1161

    Article  CAS  Google Scholar 

  32. Hendrick E, Frey M (2014) Increasing surface hydrophilicity in poly(lactic acid) electrospun fibers by addition of Pla-b-Peg co-polymers. J Eng Fabric Fiber (JEFF) 9:153–164

    CAS  Google Scholar 

  33. Didehban K, Namazi H, Entezami AA (2009) Synthesis and characterization of liquid crystalline diethanolamine-based dendrimers. Polym Adv Technol 20:1127–1135

    Article  CAS  Google Scholar 

  34. Toomari Y, Namazi H (2016) Synthesis of supramolecular biodendrimeric β-CD-(spacer-β-CD) 21 via click reaction and evaluation of its application as anticancer drug delivery agent. Int J Polym MaterPolym Biomater 65:487–496

    Article  CAS  Google Scholar 

  35. Didehban K, Namazi H, Entezami AA (2010) Non-covalent dendrimer-based liquid crystalline complexes: synthesis and characterization. Eur Polym J 46:1923–1931

    Article  CAS  Google Scholar 

  36. Namazi H, Toomari Y, Abbaspour H (2014) Fabrication of triblock ABA type peptide dendrimer based on glutamic acid dimethyl ester and PEG as a potential nano drug delivery agent. BioImpacts 4:175–182

    Article  PubMed  PubMed Central  Google Scholar 

  37. Namazi H, Mohammad Pour Fard A, Pooresmaeil M (2019) Peripherally functionalized based dendrimers as the template for synthesis of silver nanoparticles and investigation the affecting factors on their properties. Polym Bull 76:4659–4675

    Article  CAS  Google Scholar 

  38. Namazi H, Hamrahloo YT (2011) Novel PH sensitive nanocarrier agents based on citric acid dendrimers containing conjugated β-cyclodextrins. Adv Pharm Bull 1:40–47

    PubMed  PubMed Central  Google Scholar 

  39. Namazi H, Adeli M, Zarnegar Z, Jafari S, Dadkhah A, Shukla A (2007) Encapsulation of nanoparticles using linear–dendritic macromolecules. Colloid Polym Sci 285:1527–1533

    Article  CAS  Google Scholar 

  40. Didehban K, Namazi H, Entezami AA (2009) Dendrimer-based hydrogen-bonded liquid crystalline complexes: synthesis and characterization. Eur Polym J 45:1836–1844

    Article  CAS  Google Scholar 

  41. Carnahan MA, Grinstaff MW (2001) Synthesis and characterization of polyether-ester dendrimers from glycerol and lactic acid. J Am Chem Soc 123:2905–2906

    Article  CAS  PubMed  Google Scholar 

  42. Lee J, Lee S, Kwon Y-E, Kim Y-J, Choi JS (2019) Gene delivery by PAMAM dendrimer conjugated with the nuclear localization signal peptide derived from influenza B virus nucleoprotein. Macromol Res 27:360–368

    Article  CAS  Google Scholar 

  43. Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. InTech, pp 149–184

  44. Namazi H, Heydari A (2014) Synthesis of β-cyclodextrin-based dendrimer as a novel encapsulation agent. PolymInt 63:1447–1455

    CAS  Google Scholar 

  45. Skillicorn DE, Perkins GGA, Slark A, Dawkins JV (1993) Molecular weight and solution viscosity characterization of PVC. J Vinyl Technol 15:105–108

    Article  CAS  Google Scholar 

  46. Liu C, Jia Y, He A (2013) Preparation of higher molecular weight poly(L-lactic acid) by chain extension. Int J Polym Sci

  47. Blanchard L-P, Hesse J, Malhotra SL (1974) Effect of molecular weight on glass transition by differential scanning calorimetry. Canad J Chem 52:3170–3175

    Article  CAS  Google Scholar 

  48. Hua S, Chen F, Liu Z-Y, Yang W, Yang M-B (2016) Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: synthesis, characterization and properties. RSC Adv 6:1973–1983

    Article  CAS  Google Scholar 

  49. Cai Q, Zhao Y, Bei J, Xi F, Wang S (2003) Synthesis and properties of star-shaped polylactide attached to poly(amidoamine) dendrimer. Biomacromol 4:828–834

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the University of Tabriz (Grant # 816430115) and Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science for the financial supports for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Ethics declarations

Conflict of interest

The authors declare that there is not any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseyni, R., Pooresmaeil, M. & Namazi, H. Star-shaped polylactic acid-based triazine dendrimers: the catalyst type and time factors influence on polylactic acid molecular weight. Iran Polym J 29, 423–432 (2020). https://doi.org/10.1007/s13726-020-00807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00807-7

Keywords

Navigation