Skip to main content
Log in

HOTAIRM1, an enhancer lncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The long noncoding RNA HOTAIRM1 reportedly plays important roles in acute myeloid leukemia, gastric cancer and colorectal cancer. Here, we analyzed potential function of HOTAIRM1 in glioma and asked whether it participates in long-range chromatin interactions. We monitored expression of HOTAIRM1 in glioma tissues and correlated levels with patient survival using the TCGA dataset. HOTAIRM1 was highly expressed in glioma tissue, with high levels associated with shortened patient survival time. We then suppressed HOTAIRM1 activity in the human glioblastoma U251 line using CRISPR-cas9 to knock in a truncating polyA fragment. Reporter analysis of these and control cells confirmed that the HOTAIRM1 locus serves as an active enhancer. We then performed Capture-C analysis to identify target genes of that locus and applied RNA antisense purification to assess chromatin interactions between the HOTAIRM1 locus and HOXA cluster genes. HOTAIRM1 knockdown in glioma cells decreased proliferation and reduced expression of HOXA cluster genes. HOTAIRM1 regulates long-range interactions between the HOTAIRM1 locus and HOXA genes. Our work suggests a new mechanism by which HOTAIRM1 regulates glioma progression by regulating high-order chromatin structure and could suggest novel therapeutic targets to treat an intractable cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333

    CAS  PubMed  Google Scholar 

  2. Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, Shonka N, Gilbert MR, Sawaya R et al (2014) IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol 16(1):81–91

    CAS  PubMed  Google Scholar 

  3. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    PubMed  Google Scholar 

  7. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41(9):761–772

    CAS  PubMed  Google Scholar 

  9. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106(28):11667–11672

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–357

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI, Clohessy JG et al (2017) mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541:228–232

    CAS  PubMed  Google Scholar 

  14. Han Y, Wu Z, Wu T, Huang Y, Cheng Z, Li X, Sun T, Xie X, Zhou Y et al (2016) Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis 7:e2123

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu LM, Chen L, Li F, Zhang R, Li ZY, Chen FF, Jiang XD (2016) Over-expression of the long non-coding RNA HOTTIP inhibits glioma cell growth by BRE. J Exp Clin Cancer Res 35(1):162

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang G, Li Z, Tian N, Han L, Fu Y, Guo Z, Tian Y (2016) miR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression. Oncol Lett 12(2):879–886

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H, Liu Q, Liu Q et al (2018) A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol 11(1):77–77

    PubMed  PubMed Central  Google Scholar 

  18. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, McDonel PE, Guttman M, Lander ES (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539(7629):452–455

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, Wu B, Xu R, Liu W et al (2016) Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18:637–652

    CAS  PubMed  Google Scholar 

  20. Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR, Luo XQ, Chen YQ (2017) The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ 24:212–224

    CAS  PubMed  Google Scholar 

  21. Wei S, Zhao M, Wang X, Li Y, Wang K (2016) PU.1 controls the expression of long noncoding RNA HOTAIRM1 during granulocytic differentiation. J Hematol Oncol 9:44

    PubMed  PubMed Central  Google Scholar 

  22. Diaz-Beya M, Brunet S, Nomdedeu J, Pratcorona M, Cordeiro A, Gallardo D, Escoda L, Tormo M, Heras I et al (2015) The lincRNA HOTAIRM1, located in the HOXA genomic region, is expressed in acute myeloid leukemia, impacts prognosis in patients in the intermediate-risk cytogenetic category, and is associated with a distinctive microRNA signature. Oncotarget 6:31613–31627

    PubMed  PubMed Central  Google Scholar 

  23. Wan L, Kong J, Tang J, Wu Y, Xu E, Lai M, Zhang H (2016) HOTAIRM1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor. J Cell Mol Med 20:2036–2044

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang XQD, Dostie J (2017) Reciprocal regulation of chromatin state and architecture by HOTAIRM1 contributes to temporal collinear HOXA gene activation. Nucleic Acids Res 45(3):1091–1104

    CAS  PubMed  Google Scholar 

  25. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292

    CAS  PubMed  Google Scholar 

  26. Bickmore WA (2013) The spatial organization of the human genome. Ann Rev Genomics Hum Genet 14:67–84

    CAS  Google Scholar 

  27. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rao Suhas SP, Huntley Miriam H, Durand Neva C, Stamenova Elena K, Bochkov Ivan D, Robinson James T, Sanborn Adrian L, Machol I, Omer Arina D et al (2015) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 162(3):687–688

    Google Scholar 

  29. Chen X, Zhang M, Gan H, Wang H, Lee J-H, Fang D, Kitange GJ, He L, Hu Z et al (2018) A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 9(1):2949

    PubMed  PubMed Central  Google Scholar 

  30. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML, Bernstein BE (2015) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110

    PubMed  PubMed Central  Google Scholar 

  31. Roy SS, Mukherjee AK, Chowdhury S (2018) Insights about genome function from spatial organization of the genome. Hum Genomics 12(1):8

    PubMed  PubMed Central  Google Scholar 

  32. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494:497

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo X, Xu Y, Wang Z, Wu Y, Chen J, Wang G, Lu C, Jia W, Xi J et al (2018) A linc1405/eomes complex promotes cardiac mesoderm specification and cardiogenesis. Cell Stem Cell 22(6):893–908

    CAS  PubMed  Google Scholar 

  34. Davies JO, Telenius JM, McGowan SJ, Roberts NA, Taylor S, Higgs DR, Hughes JR (2016) Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat Methods 13(1):74–80

    CAS  PubMed  Google Scholar 

  35. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973

    PubMed  PubMed Central  Google Scholar 

  36. Li Q, Dong C, Cui J, Wang Y, Hong X (2018) Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res 37(1):265

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Song L, Zhang S, Duan C, Ma S, Hussain S, Wei L, Chu M (2019) Genome-wide identification of lncRNAs as novel prognosis biomarkers of glioma. J Cell Biochem 120(12):19518–19528

    CAS  PubMed  Google Scholar 

  38. Liang Q, Li X, Guan G, Xu X, Chen C, Cheng P, Cheng W, Wu A (2019) Long non-coding RNA, HOTAIRM1, promotes glioma malignancy by forming a ceRNA network. Aging (Albany NY) 11(17):6805–6838

    CAS  Google Scholar 

  39. Pradeepa MM, McKenna F, Taylor GCA, Bengani H, Grimes GR, Wood AJ, Bhatia S, Bickmore WA (2017) Psip1/p52 regulates posterior Hoxa genes through activation of lncRNA Hottip. PLoS Genet 13(4):e1006677–e1006677

    PubMed  PubMed Central  Google Scholar 

  40. Orom UA, Shiekhattar R (2013) Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154(6):1190–1193

    PubMed  PubMed Central  Google Scholar 

  41. Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J et al (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24(5):513–531

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A, Ginsberg D, Grummt I (2015) LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 60(4):626–636

    CAS  PubMed  Google Scholar 

  43. Cimino PJ, Kim Y, Wu HJ, Alexander J, Wirsching HG, Szulzewsky F, Pitter K, Ozawa T, Wang J et al (2018) Increased HOXA5 expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes Dev 32(7–8):512–523

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa BM, Smith JS, Chen Y, Chen J, Phillips HS, Aldape KD, Zardo G, Nigro J, James CD et al (2010) Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Res 70(2):453–462

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zang L, Kondengaden SM, Che F, Wang L, Heng X (2018) Potential epigenetic-based therapeutic targets for glioma. Front Mol Neurosci 11:408–408

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Romani M, Pistillo MP, Banelli B (2018) Epigenetic Targeting of Glioblastoma. Front Oncol 8:448

    PubMed  PubMed Central  Google Scholar 

  47. Taylor LP (2010) Diagnosis, treatment, and prognosis of glioma: five new things. Neurology 75:S28–S32

    PubMed  Google Scholar 

  48. Tian X, Ma J, Wang T, Tian J, Zhang Y, Mao L, Xu H, Wang S (2018) Long non-coding RNA HOXA transcript antisense RNA myeloid-specific 1-HOXA1 axis downregulates the immunosuppressive activity of myeloid-derived suppressor cells in lung cancer. Front Immunol 9:473

    PubMed  PubMed Central  Google Scholar 

  49. Quinonez SC, Innis JW (2014) Human HOX gene disorders. Mol Genet Metab 111(1):4–15

    CAS  PubMed  Google Scholar 

  50. Bhatlekar S, Fields JZ, Boman BM (2014) HOX genes and their role in the development of human cancers. J Mol Med 92(8):811–823

    CAS  PubMed  Google Scholar 

  51. Collins CT, Hess JL (2016) Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 35(9):1090–1098

    CAS  PubMed  Google Scholar 

  52. Taminiau A, Draime A, Tys J, Lambert B, Vandeputte J, Nguyen N, Renard P, Geerts D, Rezsohazy R (2016) HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-kappaB pathway in a transcription-independent manner. Nucleic Acids Res 44(15):7331–7349

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng S, Qian F, Huang Q, Wei L, Fu Y, Du Y (2018) HOXA4, down-regulated in lung cancer, inhibits the growth, motility and invasion of lung cancer cells. Cell Death Dis 9(5):465

    PubMed  PubMed Central  Google Scholar 

  54. Di Vinci A, Casciano I, Marasco E, Banelli B, Ravetti GL, Borzi L, Brigati C, Forlani A, Dorcaratto A et al (2012) Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome. J Cancer Res Clin Oncol 138(1):35–47

    PubMed  Google Scholar 

  55. Shen X, Bai H, Zhu H, Yan Q, Yang Y, Yu W, Shi Q, Wang J, Li J et al (2018) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate HOXA11 expression by sponging miR-181a in multiple myeloma. Cell Physiol Biochem 49(1):87–100

    CAS  PubMed  Google Scholar 

  56. Chang S, Liu J, Guo S, He S, Qiu G, Lu J, Wang J, Fan L, Zhao W et al (2016) HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep 35(6):3577–3585

    CAS  PubMed  Google Scholar 

  57. Furlong EEM, Levine M (2018) Developmental enhancers and chromosome topology. Science 361(6409):1341

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31701129, 81772687, 31530027) and the Natural Science Foundation of Tianjin City of China (Grant No. 18JCQNJC10100).

Author information

Authors and Affiliations

Authors

Contributions

WL, LZ, and TS conceived the projects. TS, HX, GS, JC, ZZ, and JS performed the experiments. DG contributed to sequencing and bioinformatics analysis. TS, LZ, FA, and MW wrote the manuscript.

Corresponding authors

Correspondence to Lei Zhang or Wange Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5371_MOESM1_ESM.pdf

Supplementary Fig. 1— HOTAIRM1 downregulation inhibits glioma proliferation. A Kaplan-Meir survival curve of patients with high versus low HOTAIRM1 expression. Bars indicate s.e.m., ***p < 0.001. B Schematic of CRISPR-Cas9-mediated HOTAIRM1 polyA knock-in. C Efficiency of HOTAIRM1 knock-down in two glioma lines (KI-1 and KI-2). D Proliferation of indicated glioma lines, as determined by an MTS assay. E, G Colony formation assays of indicated lines. F,H Flow cytometry analysis of the cell cycle indicates that HOTAIRM1 knockdown is associated with a decreased number of cells in S and an increase in the number of cells in G1 or G2. Bars indicate s.e.m., ***p<0.001 (PDF 294 kb)

Supplementary file2 (PDF 75 kb)

Supplementary file3 (PDF 81 kb)

Supplementary file4 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Guo, D., Xu, H. et al. HOTAIRM1, an enhancer lncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genes. Mol Biol Rep 47, 2723–2733 (2020). https://doi.org/10.1007/s11033-020-05371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05371-0

Keywords

Navigation