Skip to main content
Log in

Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Great photoelectric properties can herald the high potentials of CsPbBr3 nanocrystals (NCs) to function as the fluorescent probes for early tumor diagnosis. However, the intrinsic water vulnerability of CsPbBr3 NCs highly restricts their biomedical applications. To conquer this challenge, we herein introduce a nature inspired "stress-response" method to tightly encapsulate CsPbBr3 into SiO2 nano-shells that can dramatically improve the water stability of CsPbBr3@SiO2 nanoparticles for over 48 h. We further highlighted the advantageous features of CsPbBr3@SiO2 by using them as the fluorescent probes for CT26 tumor cell imaging with their high water stability, biocompatibility, and low cytotoxicity. Our work for the first time exhibited the potential of lead halide perovskite NCs for tumor diagnosis, and can highly anticipate the further in vivo biomedical applications that light up live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y. C.; Tan, X. T.; Sun, Q. H.; Chen, Q. S.; Wang W. J.; Fan, X. D. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat. Biomed. Eng.2017, 1, 724–735.

    CAS  Google Scholar 

  2. Hu, X. X.; Wang, Y. Q.; Liu, H. Y.; Wang, J.; Tan, Y. N.; Wang, F. B.; Yuan, Q.; Tan, E. H. Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes. Chem. Sci.2017, 8, 466–472.

    CAS  Google Scholar 

  3. Alix-Panabières, C.; Pantel, K. Clinical prospects of liquid biopsies. Nat. Biomed. Eng.2017, 7, 0065.

    Google Scholar 

  4. Wang, Y. C.; Hu, R.; Lin, G. M.; Roy, I.; Yong, K. T. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl. Mater. Interfaces2013, 5, 2786–2799.

    CAS  Google Scholar 

  5. Hoffman, R. M. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat. Rev. Cancer2005, 5, 796–806.

    CAS  Google Scholar 

  6. Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.2004, 22, 969–976.

    CAS  Google Scholar 

  7. Kogure, T.; Karasawa, S.; Araki, T.; Saito, K.; Kinjo, M.; Miyawaki, A. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol.2006, 24, 577–581.

    CAS  Google Scholar 

  8. Zheng, X. C.; Mao, H.; Huo, D.; Wu, W.; Liu, B. R.; Jiang, X. Q. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng.2017, 1, 0057.

    CAS  Google Scholar 

  9. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nana Lett.2004, 4, 11–18.

    CAS  Google Scholar 

  10. Li, K.; Hou, J. T.; Yang, J.; Yu, X. Q. A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem. Commun.2017, 53, 5539–5541.

    CAS  Google Scholar 

  11. Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature2018, 561, 88–93.

    CAS  Google Scholar 

  12. Lu, M.; Zhang, X. Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater.2018, 30, 1804691.

    Google Scholar 

  13. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science2014, 345, 542–546.

    CAS  Google Scholar 

  14. Quan, L. N.; de Arquer, P. F. G.; Sabatini, R. P.; Sargent, E. H. Perovskites for light emission. Adv. Mater.2018, 30, 1801996.

    Google Scholar 

  15. Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater.2018, 17, 394–405.

    CAS  Google Scholar 

  16. Wei, Y.; Deng, X. R.; Xie, Z. X.; Cai, X. C.; Liang, S. S.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Lin, J. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Fund. Mater.2017, 27, 1703535.

    Google Scholar 

  17. Wang, Y.; Li, X. M.; Sreejith, S.; Cao, E.; Wang, Z.; Stuparu, M. C.; Zeng, H. B.; Sun, H. D. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Adv. Mater.2016, 28, 10637–10643.

    CAS  Google Scholar 

  18. Ke, W. J.; Stoumpos, C. C.; Kanatzidis, M. G. “Unleaded” perovskites: Status quo and future prospects of tin-based perovskite solar cells. Adv. Mater.2018, 31, 1803230.

    Google Scholar 

  19. Rowley, G.; Spector, M.; Kormanec, J.; Roberts, M. Pushing the envelope: Extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol.2006, 4, 383–394.

    CAS  Google Scholar 

  20. Ruiz, N.; Kahne, D.; Silhavy, T. J. Advances in understanding bacterial outer-membrane biogenesis. Nat. Rev. Microbiol.2006, 4, 57–66.

    Google Scholar 

  21. Wang, Y. W.; Varadi, L.; Trinchi, A.; Shen, J. H.; Zhu, Y. H.; Wei, G.; Li, C. Z. Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small2018, 14, 1803156.

    Google Scholar 

  22. Tsoi, K. M.; Dai, Q.; Alman, B. A.; Chan, W. C. W. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res.2013, 46, 662–671.

    CAS  Google Scholar 

  23. Erogbogbo, E.; Yong, K. Y.; Roy, I.; Xu, G. X.; Prasad, P. N.; Swihart, M. T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano2008, 2, 873–878.

    CAS  Google Scholar 

  24. Zhang, C.; Ni, D. L.; Liu, Y. Y.; Yao, H. L.; Bu, W. B.; Shi, J. L. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol.2017, 12, 378–386.

    CAS  Google Scholar 

  25. Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater.2016, 28, 8718–8725.

    CAS  Google Scholar 

  26. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = CI, Br, I). Nana Lett.2015, 75, 5635–5640.

    Google Scholar 

  27. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = CI, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett.2015, 75, 3692–3696.

    Google Scholar 

  28. Zhang, E.; Shi, Z. E.; Li. S.; Ma, Z. Z.; Li, Y.; Wang, L. T.; Wu, D.; Tian, Y. T.; Du, G. T.; Li, X. J.; Shan, C. X. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting. ACS Appl. Mater. Interfaces2019, 77, 28013–28022.

    Google Scholar 

  29. Zhong, Q. X.; Cao, M. H.; Hu, H. C.; Yang, D.; Chen, M.; Li, P. L.; Wu, L. Z.; Zhang, Q. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano2018, 12, 8579–8587.

    CAS  Google Scholar 

  30. Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white leds with silica-coated inorganic perovskite quantum dots. Adv. Mater.2016, 28, 10088–10094.

    CAS  Google Scholar 

  31. Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of ch3nh3pbbr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc.2016, 138, 5749–5752.

    CAS  Google Scholar 

  32. Liu, Z. Q.; Zhang, Y. Q.; Fan, Y.; Chen, Z. Q.; Tang, Z. B.; Zhao, J. L.; Lv, Y.; Lin, J.; Guo, X. Y.; Zhang, J. H. et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACSAppl. Mater. Interfaces2018, 10, 13053–13061.

    CAS  Google Scholar 

  33. Hu, Z. P.; Liu, Z. Z.; Bian, Y.; Li, S. Q.; Tang, X. S.; Du, J.; Zang, Z. G.; Zhou, M.; Hu, W.; Tian, Y. X. et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/ SiO2 nanocrystals with excellent stability. Adv. Opt. Mater.2018, 6, 1700997.

    Google Scholar 

  34. Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y. H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J. Am. Chem. Soc.2018, 140, 406–412.

    CAS  Google Scholar 

  35. Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem., Int. Ed.2017, 56, 8134–8138.

    CAS  Google Scholar 

  36. Kapuscinski, J. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem.1995, 70, 220–233.

    CAS  Google Scholar 

  37. Ulbrich, K.; Michaelis, M.; Rothweiler, E.; Knobloch, T.; Sithisarn, P.; Cinatl, J.; Kreuter, J. Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells. Int. J. Pharm.2011, 406, 128–134.

    CAS  Google Scholar 

  38. Kimura, K.; Yamasaki, K.; Nakamura, H.; Haratake, M.; Haratake, K.; Otagiri, M. Preparation and in vitro analysis of human serum albumin nanoparticles loaded with anthracycline derivatives. Chem. Pharm. Bull.2018, 66, 382–390.

    CAS  Google Scholar 

  39. Tan, T. T.; Selvan, S. T.; Zhao, L.; Gao, S. J.; Ying, J. Y. Size control, shape evolution, and silica coating of near-infrared-emitting pbse quantum dots. Chem. Mater.2007, 19, 3112–3117.

    CAS  Google Scholar 

  40. Sanz, J.; Fayad, Z. A. Imaging of atherosclerotic cardiovascular disease. Nature2008, 457, 953–957.

    Google Scholar 

  41. Cordeiro, M. E.; Guo, L.; Luong, V.; Harding, G.; Wang, W.; Jones, H. E.; Moss, S. E.; Sillito, A. M.; Fitzke, F. W. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc. Natl. Acad. Sci. USA2004, 707, 13352–13356.

    Google Scholar 

  42. Ma, T. C.; Hou, Y.; Zeng, J. E.; Liu, C. Y.; Zhang, P. S.; Jing, L. H.; Shangguan, D. H.; Gao, M. Y. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. J. Am. Chem. Soc.2018, 140, 211–218.

    CAS  Google Scholar 

Download references

Acknowledgements

The author thank Professor Peng Wang for experimental assistance in STEM-HAADF measurements. This work was supported primarily by the National Key Research and Development Program of China (No. 2018YFE0208500), the Major Research Plan of the National Natural Science Foundation of China (No. 91963206), the National Natural Science Foundation of China (Nos. U1508202 and 51627810), the Natural Science Foundation of Jiangsu Province (No. SBK2018022120), the open fund of Wuhan National Laboratory for Optoelectronics (No. 2018WNLOKF020), the open fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies (No. EEST2018-1), and the civil aerospace technology preliminary research project of the State Administration of Science, Technology and Industry for National Defense.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingfang Yao or Zhigang Zou.

Electronic Supplementary Material

Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation

Supplementary material, approximately 9.32 MB.

Supplementary material, approximately 9.55 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Wang, Y., Wang, B. et al. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 13, 795–801 (2020). https://doi.org/10.1007/s12274-020-2697-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2697-9

Keywords

Navigation