Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Preparation of palladium-loaded polymer hydrogel catalysts with high durability and recyclability

Abstract

To establish effective chemical transformations, catalytic systems with advantages such as high activity, recyclability, durability, and operability have attracted considerable attention. One of the strategies for the development of high-performance catalytic systems is the use of polymer hydrogels. In this focus review, an overview of our research using poly(N-isopropyl acrylamide)-based hydrogel particles and macroporous monoliths as molecular catalysts and loading matrices for palladium catalysts is summarized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benaglia M, Puglisi A, Cozzi F. Polymer-supported organic catalysts. Chem Rev. 2003;103:3401–29.

    Article  CAS  PubMed  Google Scholar 

  2. Ikegami S, Hamamoto H. Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem Rev. 2009;109:583–93.

    Article  CAS  PubMed  Google Scholar 

  3. Bergbreiter DE. Soluble polymers as tools in catalysis. ACS Macro Lett. 2014;3:260–5.

    Article  CAS  Google Scholar 

  4. McPhee W, Tam KC, Pelton R. Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interface Sci. 1993;156:24–30.

    Article  CAS  Google Scholar 

  5. Debord JD, Lyon LA. Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures. Langmuir. 2003;19:7662–4.

    Article  CAS  Google Scholar 

  6. Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc. 2012;134:18177–80.

    Article  CAS  PubMed  Google Scholar 

  7. Seto H, Morii T, Yoneda T, Murakami T, Hoshino Y, Miura Y. Preparation of palladium-loaded polymer nanoparticles with catalytic activity for hydrogenation and Suzuki coupling reactions. Chem Lett. 2013;42:301–3.

    Article  CAS  Google Scholar 

  8. Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y. Temperature‐responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem, Int Ed. 2014;53:2654–7.

    Article  CAS  Google Scholar 

  9. Yue M, Hoshino Y, Miura Y. Design rationale of thermally responsive microgel particle films that reversibly absorb large amounts of CO2: Fine tuning the pK a of ammonium ions in the particles. Chem Sci. 2015;6:6112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seto H, Imai K, Hoshino Y, Miura Y. Polymer microgel particles as basic catalysts for Knoevenagel condensation in water. Polym J. 2016;48:897–904.

    Article  CAS  Google Scholar 

  11. Matsumoto H, Akiyoshi T, Hoshino Y, Seto H, Miura Y. Size-tuned hydrogel network of palladium-confining polymer particles: a highly active and durable catalyst for Suzuki coupling reactions in water at ambient temperature. Polym J. 2018;50:1179–86.

    Article  CAS  Google Scholar 

  12. Feil H, Bae YH, Feijen J, Kim SW. Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels. Macromolecules. 1992;25:5528–30.

    Article  CAS  Google Scholar 

  13. Yue M, Imai K, Yamashita C, Miura Y, Hoshino Y. Effects of hydrophobic modifications and phase transitions of polyvinylamine hydrogel films on reversible CO2 capture behavior: comparison between copolymer films and blend films for temperature-responsive CO2 absorption. Macromol Chem Phys. 2017;218:1600570.

    Article  CAS  Google Scholar 

  14. Yue M, Imai K, Miura Y, Hoshino Y. Design and preparation of thermo-responsive vinylamine-containing micro-gel particles for reversible absorption of carbon dioxide. Polym J. 2017;49:601–6.

    Article  CAS  Google Scholar 

  15. Welsch N, Ballauff M, Lu Y. Microgels as nanoreactors: applications in catalysis. Adv Polym Sci. 2011;234:129–63.

    Article  CAS  Google Scholar 

  16. Díaz DD, Kühbeck D, Koopmans RJ. Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem Soc Rev. 2011;40:427–48.

    Article  Google Scholar 

  17. Wong YM, Hoshino Y, Sudesh K, Miura Y, Numata K. Optimization of poly(N-isopropylacrylamide) as an artificial amidase. Biomacromolecules. 2015;16:411–21.

    Article  CAS  PubMed  Google Scholar 

  18. Nakamoto M, Nonaka T, Shea KJ, Miura Y, Hoshino Y. Design of synthetic polymer nanoparticles that facilitate resolubilization and refolding of aggregated positively charged lysozyme. J Am Chem Soc. 2016;138:4282–5.

    Article  CAS  PubMed  Google Scholar 

  19. Kureha T, Nagase Y, Suzuki D. High reusability of catalytically active gold nanoparticles immobilized in core–shell hydrogel microspheres. ACS Omega. 2018;3:6158–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang G, Kuroda K, Enoki T, Grosberg A, Masamune S, Oya T, et al. Gel catalysts that switch on and off. Proc Natl Acad Sci USA. 2000;97:98614.

    Google Scholar 

  21. Li JJ, Gribble GW. Palladium in heterocyclic chemistry: a guide for the synthetic chemist. Oxford: Pergamon; 2000.

    Google Scholar 

  22. Phan NT, Van Der Sluys M, Jones CW. On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings—Homogeneous or heterogeneous catalysis: a critical review. Adv Synth Catal. 2006;348:609–79.

    Article  CAS  Google Scholar 

  23. Narayanan R, El-Sayed MA. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem C. 2005;109:12663–76.

    Article  CAS  Google Scholar 

  24. Iglesias M, Antic´o E, Salvad´o V. Recovery of palladium(II) and gold(III) from diluted liquors using the resin duolite GT-73. Anal Chim Acta. 1999;381:61–7.

    Article  CAS  Google Scholar 

  25. Fänger C, Wack H, Ulbricht M. Macroporous poly(N-isopropylacrylamide) hydrogels with adjustable size “cutoff” for the efficient and reversible immobilization of biomacromolecules. Macromol Biosci. 2006;6:393–402.

    Article  PubMed  CAS  Google Scholar 

  26. Noël T, Buchwald SL. Cross‐coupling in flow. Chem Soc Rev. 2011;40:5010–29.

    Article  PubMed  CAS  Google Scholar 

  27. Seto H, Yoneda T, Morii T, Hoshino Y, Miura Y, Murakami T. Membrane reactor immobilized with palladium-loaded polymer nanogel for continuous-flow Suzuki coupling reaction. AIChE J. 2015;61:582–9.

    Article  CAS  Google Scholar 

  28. Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A. 2010;1217:902–24.

    Article  CAS  PubMed  Google Scholar 

  29. Hjerten S, Liao JL, Zhang R. High-performance liquid chromatography on continuous polymer beds. J Chromatogr. 1989;473:273–5.

    Article  CAS  Google Scholar 

  30. Svec F, Fréchet JMJ. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem. 1992;64:820–2.

    Article  CAS  Google Scholar 

  31. Wang QC, Svec F, Fréchet JMJ. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography. Anal Chem. 1993;65:2243–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wang QC, Svec F, Fréchet JMJ. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly(styrene-co-divinylbenzene). J Chromatogr A. 1994;669:230–5.

    Article  CAS  PubMed  Google Scholar 

  33. Svec F, Fréchet JMJ. Kinetic control of pore formation in macroporous polymers. Formation of “molded” porous materials with high flow characteristics for separations or catalysis. Chem Mater. 1995;7:707–15.

    Article  CAS  Google Scholar 

  34. Svec F, Fréchet JMJ. Temperature, a simple and efficient tool for the control of pore size distribution in macroporous polymers. Macromolecules. 1995;28:7580–2.

    Article  CAS  Google Scholar 

  35. Wang QC, Svec F, Fréchet JMJ. Hydrophilization of porous polystyrene-based continuous rod column. Anal Chem. 1995;67:670–4.

    Article  CAS  PubMed  Google Scholar 

  36. Svec F, Fréchet JMJ. New designs of macroporous polymers and supports: from separation to biocatalysis. Science. 1996;273:205–11.

    Article  CAS  PubMed  Google Scholar 

  37. Viklund C, Svec F, Fréchet JMJ, Irgum K. Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization. Chem Mater. 1996;8:744–50.

    Article  CAS  Google Scholar 

  38. Peters EC, Petro M, Svec F, Fréchet JMJ. Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem. 1997;69:3646–9.

    Article  CAS  PubMed  Google Scholar 

  39. Xie S, Svec F, Fréchet JMJ. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J Chromatogr A. 1997;775:65–72.

    Article  CAS  PubMed  Google Scholar 

  40. Xie S, Svec F, Fréchet JMJ. Preparation of porous hydrophilic monoliths: effect of the polymerization conditions on the porous properties of poly(acrylamide‐coN,N′‐methylenebisacrylamide) monolithic rods. J Polym Sci Part A: Polym Chem. 1997;35:1013–21.

    Article  CAS  Google Scholar 

  41. Peters EC, Petro M, Svec F, Fréchet JMJ. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry. Anal Chem. 1998;70:2288–95.

    Article  CAS  PubMed  Google Scholar 

  42. Xie S, Svec F, Fréchet JMJ. Design of reactive porous polymer supports for high throughput bioreactors: Poly(2‐vinyl‐4,4‐dimethylazlactone‐co‐acrylamide‐co‐ethylene dimethacrylate) monoliths. Biotechnol Bioeng. 1999;62:30–5.

    Article  CAS  PubMed  Google Scholar 

  43. Jančo M, Sýkora D, Svec F, Fréchet JMJ. Rapid determination of molecular parameters of synthetic polymers by precipitation/redissolution high‐performance liquid chromatography using “molded” monolithic column. J Polym Sci Part A: Polym Chem. 2000;38:2767–78.

    Article  Google Scholar 

  44. Yu C, Svec F, Fréchet JMJ. Towards stationary phases for chromatography on a microchip: Molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography. Electrophoresis. 2000;21:120–7.

    Article  CAS  PubMed  Google Scholar 

  45. Rohr T, Yu C, Davey MH, Svec F, Fréchet JMJ. Porous polymer monoliths: Simple and efficient mixers prepared by direct polymerization in the channels of microfluidic chips. Electrophoresis. 2001;22:3959–67.

    Article  CAS  PubMed  Google Scholar 

  46. Yu C, Xu M, Svec F, Fréchet JMJ. Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free‐radical polymerization. J Polym Sci Part A: Polym Chem. 2002;40:755–69.

    Article  CAS  Google Scholar 

  47. Peterson DS, Rohr T, Svec F, Fréchet JMJ. Enzymatic microreactor-on-a-chip: protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices. Anal Chem. 2002;74:4081–8.

    Article  CAS  PubMed  Google Scholar 

  48. Kabra BG, Gehrke SH. Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. Polym Commun. 1991;32:322–3.

    CAS  Google Scholar 

  49. Gotoh T, Nakatni Y, Sakohara S. Novel synthesis of thermosensitive porous hydrogels. J Appl Polym Sci. 1998;69:895–906.

    Article  CAS  Google Scholar 

  50. Seto H, Matsumoto H, Shibuya M, Akiyoshi T, Hoshino Y, Miura Y. Poly(N‐isopropylacrylamide) gel‐based macroporous monolith for continuous‐flow recovery of palladium(II) ions. J Appl Polym Sci. 2017;134:44385.

    Article  CAS  Google Scholar 

  51. Matsumoto H, Seto H, Akiyoshi T, Shibuya M, Hoshino Y, Miura Y. Macroporous gel with a permeable reaction platform for catalytic flow synthesis. ACS Omega. 2017;2:8796–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matsumoto H, Seto H, Akiyoshi T, Shibuya M, Hoshino Y, Miura Y. Macroporous monolith with polymer gel matrix as continuous-flow catalytic reactor. Chem Lett. 2017;46:1065–7.

    Article  CAS  Google Scholar 

  53. Seto H, Shibuya M, Matsumoto H, Hoshino Y, Miura Y. Glycopolymer monoliths for affinity bioseparation of proteins in a continuous-flow system: glycomonoliths. J Mater Chem B. 2017;5:1148–54.

    Article  CAS  PubMed  Google Scholar 

  54. Miura Y, Seto H, Shibuya M, Hoshino Y. Biopolymer monolith for protein purification. Faraday Discuss 2019;219:154–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These works were supported by Grants-in-Aid for JSPS Fellows (25.5206, 18J20345), a Grant-in-Aid for Scientific Research on Innovative Areas (16H01036), and a Grant-in-Aid for Scientific Research (C) (19K05042). We deeply thank the collaborators and students cited herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Seto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seto, H., Matsumoto, H. & Miura, Y. Preparation of palladium-loaded polymer hydrogel catalysts with high durability and recyclability. Polym J 52, 671–679 (2020). https://doi.org/10.1038/s41428-020-0323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0323-z

This article is cited by

Search

Quick links