Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Binding of clozapine to the GABAB receptor: clinical and structural insights

Abstract

Clozapine is the gold-standard agent for treatment resistant schizophrenia but its mechanism of action remains unclear. There is emerging evidence of the potential role of the GABAB receptor in the pathogenesis of schizophrenia. It has been hypothesised that clozapine can mediate its actions via the GABAB receptor. Baclofen is currently recognised as the prototype GABAB receptor agonist. There are some potential clinical similarities between clozapine and baclofen. Indeed, baclofen has been previously proposed for use as an antipsychotic agent. Our analysis of the X-ray crystal structure of GABAB receptor along with molecular docking calculations, suggests that clozapine could directly bind to the GABAB receptor similar to that of baclofen. This finding could lead to a better understanding of the pharmacological uniqueness of clozapine, potential development of a biomarker for treatment resistant schizophrenia and the development of more targeted treatments leading to personalisation of treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: X-ray crystal structure of the extracellular domain of the GABAB receptor and the chemical structures of GABAB receptor agonists and clozapine.
Fig. 2: Binding mode of clozapine within the extracellular domain of the GABAB receptor and its structural overlay with baclofen.

Similar content being viewed by others

References

  1. Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.

    Article  CAS  PubMed  Google Scholar 

  2. Van Os J, Kapur S. Schizophrenia. Lancet. 2009;374:635–45.

    Article  PubMed  CAS  Google Scholar 

  3. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.

    Article  PubMed  Google Scholar 

  4. Marwaha S, Johnson S, Bebbington P, Stafford M, Angermeyer MC, Brugha T, et al. Rates and correlates of employment in people with schizophrenia in the UK, France and Germany. Br J Psychiatry. 2007;191:30–37.

    Article  PubMed  Google Scholar 

  5. Siskind D, Siskind V, Kisely S. Clozapine response rates among people with treatment-resistant schizophrenia data from a systematic review and meta-analysis. Can J Psychiatry. 2017;62:772–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Taylor DM. Clozapine for treatment-resistant schizophrenia: still the gold standard? CNS Drugs. 2017;31:177–80.

    Article  PubMed  Google Scholar 

  7. Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine versus first and second generation antipsychotics in treatment refractory schizophrenia: a systematic review and meta-analysis. Br J Psych. 2016;209:385–92.

    Article  Google Scholar 

  8. Faden J. Treatment resistant schizophrenia: a brief overview of treatment options. J Clin Psych. 2019;80:18ac12394.

    Google Scholar 

  9. Hippius H. A historical perspective of clozapine. J Clin Psychiatry. 1999;60:22–23.

    Article  PubMed  Google Scholar 

  10. Idanpaan-Heikkila J, Alhava E, Olkimora M. Clozapine and agranulocytosis. Lancet. 1975;2:611.

    Article  CAS  PubMed  Google Scholar 

  11. Kane J, Honigfeld G, Singer J. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988;45:789–96.

    Article  CAS  PubMed  Google Scholar 

  12. Tiihonen J, Lonnquist J, Wahlbeck K, Klaukka T, Niskanen L, Tanskanen A, et al. 11year follow-up of mortality in patients with schizophrenia: a population based cohort study (FIN11 study). Lancet. 2009;374:620–7.

    Article  PubMed  Google Scholar 

  13. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull. 2009;35:549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue CY, et al. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry. 1989;146:905–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yilmaz Z, Zai CC, Hwang R, Mann S, Arenovich T, Remington G, et al. Antipsychotics, dopamine D2 receptor occupancy and clinical improvement in schizophrenia: a meta-analysis. Schizophr Res. 2012;140:214–20.

    Article  PubMed  Google Scholar 

  16. O’Connor WT, O’Shea SD. Clozapine and GABA transmission in schizophrenia disease models: establishing principles to guide treatments. Pharmacol Ther. 2015;50:47–80.

    Article  CAS  Google Scholar 

  17. Meltzer HY. Mechanism of action of atypical antipsychotic drugs. In: Charney D, Coyle JT, Nemeroff C, editors. Neuropsychopharmacology: the fifth generation of progress. Philadelphia, PA: Lippincott, Williams and Wilkins; 2002. pp. 819–831.

  18. Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry. 2001;158:360–9.

    Article  CAS  PubMed  Google Scholar 

  19. Daskalakis ZJ, George TP. Clozapine, GABA(B), and the treatment of resistant schizophrenia. Clinical Pharmacol Ther. 2009;86:442–6.

    Article  CAS  Google Scholar 

  20. Orhan F, Fatouros-Bergman H, Goiny M, Malmqvist A, Piehl F, Karolinska Schizophrenia Project (KaSP) Consortium. et al. CSF GABA is reduced in first-episode psychosis and associates to symptom severity. Mol Psychiatry. 2018;23:1244–50.

    Article  CAS  PubMed  Google Scholar 

  21. Bowery N. GABA B receptor: a site of therapeutic benefit. Curr Opin Pharmacol. 2006;6:37–43.

    Article  CAS  PubMed  Google Scholar 

  22. Bendtsen L, Zakrzewska J, Abbott J, Braschinsky M, Di Stefano G, Donnet A, et al. European academy of neurology guideline on trigeminal neuralgia. Eur J Neurol. 2019;26:831–49.

    Article  CAS  PubMed  Google Scholar 

  23. Rose AK, Jones A. Baclofen: its effectiveness in reducing harmful drinking, craving and negative mood. A meta-analysis. Addiction. 2018;113:1396–406.

    Article  PubMed  Google Scholar 

  24. Fredericksen P. Baclofen in the treatment of schizophrenia. Lancet. 1975;1:702.

    Article  Google Scholar 

  25. Schöpf J, Hucker H. Baclofen in the treatment of schizophrenia: a pilot study. Pharmakopsychiatr Neuropsychopharmakol. 1977;10:89–91.

    Article  PubMed  Google Scholar 

  26. Beckmann H, Frische M, Rüther E, Zimmer R. Baclofen (para-chlorphenyl-GABA) in schizophrenia. Pharmakopsychiatr Neuropsychopharmakol. 1977;10:26–31.

    Article  CAS  PubMed  Google Scholar 

  27. Davis KL, Hollister LE, Berger PA. Baclofen in schizophrenia. Lancet. 1976;1:1245.

    Article  CAS  PubMed  Google Scholar 

  28. Simpson GM, Branchey MH, Shrivastava RK. Baclofen in schizophrenia. Lancet. 1976;1:966–7.

    Article  CAS  PubMed  Google Scholar 

  29. Gulmann NC, Bahr B, Andersen B, Eliassen HM. A double-blind trial of baclofen against placebo in the treatment of schizophrenia. Acta Psychiatr Scand. 1976;54:287–93.

    Article  CAS  PubMed  Google Scholar 

  30. Bigelow LB, Nasrallah H, Carman J, Gillin JC, Wyatt RJ. Baclofen treatment in chronic schizophrenia: a clinical trial. Am J Psychiatry. 1977;134:318–20.

    Article  CAS  PubMed  Google Scholar 

  31. Micoulaud-Franchi JA, Aramaki M, Geoffroy PA, Richieri R, Cermolacce M, Faget C, et al. Effect of clozapine on perceptual abnormalities and sensory gating. A preliminary cross-sectional study in schizophrenia. J Clin Psychopharmacol. 2015;35:184–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bortolato M, Frau R, Orrù M, Piras AP, Fà M, Tuveri A, et al. Activation of GABA (B) recptors reverses spontaneous gating deficits in juvenile DBA/2J mice. Psychopharmacology. 2007;194:361–9.

    Article  CAS  PubMed  Google Scholar 

  33. Beas BS, Setlow B, Bizon JL. Effect of acute administration of the GABA B receptor agonist on behavioural flexibility in rats. Psychopharmacology. 2016;233:2787–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ilg AK, Enkel T, Bartsch D, Bähner F. Behavioral effects of acute systemic low-dose clozapine in wild-type rats: Implications for the use of DREADDS in behavioural neuroscience. Front Behav Neurosci. 2018;12:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Moncrieff J. Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal–related relapse. Acta Psychiatr Scand. 2006;114:3–13.

    Article  CAS  PubMed  Google Scholar 

  36. Miller R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics and individual variation in sensitivity to their actions: PART 11. Curr Neuropharmacol. 2009;7:315–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leandre F, Ginory A. A case of baclofen withdrawal induced psychosis treated with lorazepam. Aust N Z J Psychiatry. 2019;53:174.

    Article  PubMed  Google Scholar 

  38. Kirubakaran V, Mayfield D, Rengachary S. Dyskinesia and psychosis in a patient following baclofen withdrawal. Am J Psychiatry. 1984;141:692–3.

    Article  CAS  PubMed  Google Scholar 

  39. Arnold ES, Rudd SM, Kirshner H. Manic psychosis following rapid withdrawal from baclofen. Am J Psychiatry. 1980;137:1466–7.

    Article  CAS  PubMed  Google Scholar 

  40. Khokhar JY, Dwiel LL, Henricks AM, Doucette WT, Green AI. The link between schizophrenia and substance use disorder: a unifying hypothesis. Schizophr Res. 2018;194:78–85.

    Article  PubMed  Google Scholar 

  41. George TP, Sernyak MJ, Ziedonis DM, Woods SW. Effects of clozapine on smoking in chronic schizophrenia outpatients. J Clin Psychiatry. 1995;56:344–6.

    CAS  PubMed  Google Scholar 

  42. Siskind DJ, Harris M, Phillipou A, Morgan VA, Waterreus A, Galletly C, et al. Clozapine users in Australia: their characteristics and experience of care based on data from the 2010 National Survey of High Impact Psychosis. Epidemiol Psychiatr Sci. 2017;26:325–37.

    Article  CAS  PubMed  Google Scholar 

  43. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psychiatry. 1991;48:996–1001.

    Article  CAS  PubMed  Google Scholar 

  44. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–66.

    Article  CAS  PubMed  Google Scholar 

  45. Olsen RW, Homanics GE. Function of GABAA receptors: insights from mutant and knockout mice. In: Martin DL, Olsen RW, editors. In GABA in the nervous system: the view at 50 years. Philadelphia: Lippincott, Williams & Wilkins; 2000. pp. 81–96

  46. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev. 2004;84:835–67.

    Article  CAS  PubMed  Google Scholar 

  47. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, et al. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev. 2002;54:247–64.

    Article  CAS  PubMed  Google Scholar 

  48. Bortolato M, Frau R, Orrù M, Piras AP, Fà M, Tuveri A, et al. Activation of GABA(B) receptors reverses spontaneous gating deficits in juvenile DBA/2J mice. Psychopharmacology. 2007;194:361–9.

    Article  CAS  PubMed  Google Scholar 

  49. Mizukami K, Sasaki M, Ishikawa M, Iwakiri M, Hidaka S, Shiraishi H, et al. Immunohistochemical localization of gamma-aminobutyric acid(B) receptor in the hippocampus of subjects with schizophrenia. Neurosci Lett. 2000;283:101–4.

    Article  CAS  PubMed  Google Scholar 

  50. Ishikawa M, Mizukami K, Iwakiri M, Asada T. Immunohistochemical and immunoblot analysis of gamma-aminobutyric acid B receptor in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Neurosci Lett. 2005;383:272–7.

    Article  CAS  PubMed  Google Scholar 

  51. Mizukami K, Sasaki M, Ishikawa M, Iwakiri M, Hidaka S, Shiraishi H, et al. Immunohistochemical localization of the gamma-aminobutyric acid(B) receptor in the hippocampus of subjects with schizophrenia. Neurosci. Lett. 2000;283:101–4.

    Article  CAS  PubMed  Google Scholar 

  52. Freedman R, Adams CE, Adler LE, Bickford PC, Gault J, Harris JG, et al. Inhibitory neurophysiological deficit as a phenotype for genetic investigation of schizophrenia. Am J Med Genet. 2000;97:58–64.

    Article  CAS  PubMed  Google Scholar 

  53. Adler LE, Olincy A, Cawthra EM, McRae KA, Harris JG, Nagamoto HT, et al. Varied effects of atypical neuroleptics on P50 auditory gating in schizophrenia patients. Am J Psychiatry. 2004;161:1822–8.

    Article  PubMed  Google Scholar 

  54. Liu SK, Fitzgerald PB, Daigle M, Chen R, Daskalakis ZJ. The relationship between cortical inhibition, antipsychotic treatment, and the symptoms of schizophrenia. Biol Psychiatry. 2009;65:503–9.

    Article  PubMed  Google Scholar 

  55. Kaster TS, de Jesus D, Radhu N, Farzan F, Blumberger DM, Rajji TK, et al. Clozapine potentiation of GABA mediated cortical inhibition in treatment resistant schizophrenia. Schizophr Res. 2015;165:157–62.

    Article  PubMed  Google Scholar 

  56. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Moller B, Fountain SI, Chen R. Increased cortical inhibition in persons with schizophrenia treated with clozapine. J Psychopharmacol. 2008;22:203–9.

    Article  CAS  PubMed  Google Scholar 

  57. Geng Y, Bush M, Mosyak L, Wang F, Fan QR. Structural mechanism of ligand activation in human GABA(B) receptor. Nature. 2013;504:254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frangaj A, Fan QR. Structural biology of GABAB receptor. Neuropharmacology. 2018;136:68–79.

    Article  CAS  PubMed  Google Scholar 

  59. Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature. 1997;386:239–46.

    Article  CAS  PubMed  Google Scholar 

  60. Malitschek B, Schweizer C, Keir M, Heid J, Froestl W, Mosbacher J, et al. The N-terminal domain of gamma-aminobutyric Acid(B) receptors is sufficient to specify agonist and antagonist binding. Mol Pharmacol. 1999;56:448–54.

    Article  CAS  PubMed  Google Scholar 

  61. Froestl W. Chemistry and pharmacology of GABAB receptor ligands. Adv Pharmacol. 2010;58:19–62.

    Article  CAS  PubMed  Google Scholar 

  62. Wu Y, Blichowski M, Daskalakis ZJ, Wu Z, Liu CC, Cortez MA, et al. Evidence that clozapine directly interacts on the GABAB receptor. Neuroreport. 2011;22:637–41.

    Article  CAS  PubMed  Google Scholar 

  63. Lee J, Takeuchi H, Fervaha G, Sin GL, Foussias G, Agid O, et al. Subtyping schizophrenia by treatment response: antipsychotic development and the central role of positive symptoms. Can J Psychiatry. 2015;60:515–22.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Siskind D, Siskind V, Kisely S. Clozapine response rates among people with treatment resistant schizophrenia: data from a systematic review and meta-analysis. Can J Psychiatry. 2017;62:772–77.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Okhuijsen-Pfeifer C, Huijsman EAH, Hasan A, Sommer IEC, Leucht S, Kahn RS, et al. Clozapine as first- or second-line treatment: a systematic review and meta-analysis. Acta Psychiatr Scand. 2018;138:281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46:499–511.

    Article  CAS  PubMed  Google Scholar 

  67. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28.

    Article  CAS  Google Scholar 

  68. Powell MJD. Restart procedures for the conjugate gradient method. Math Program. 1977;12:241–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pramod C. Nair or Tarun Bastiampillai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, P.C., McKinnon, R.A., Miners, J.O. et al. Binding of clozapine to the GABAB receptor: clinical and structural insights. Mol Psychiatry 25, 1910–1919 (2020). https://doi.org/10.1038/s41380-020-0709-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0709-5

This article is cited by

Search

Quick links