Skip to main content

Advertisement

Log in

Pharmacokinetic analysis of [68Ga]Ga-DOTA-TOC PET in meningiomas for assessment of in vivo somatostatin receptor subtype 2

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

DOTA-D-Phe1-Tyr3-octreotide with gallium-68 ([68Ga]Ga-DOTA-TOC) is one of the PET tracers that forms the basis for peptide receptor radionuclide therapy based on somatostatin receptor subtype 2 (SSTR2) expression in meningiomas. Yet, the quantitative relationship between [68Ga]Ga-DOTA-TOC accumulation and SSTR2 is unknown. We conducted a correlative analysis of a range of [68Ga]Ga-DOTA-TOC PET metric(s) as imaging surrogate(s) of the receptor binding in meningiomas by correlating the PET results with SSTR2 expression from surgical specimens. We additionally investigated possible influences of secondary biological factors such as vascularization, inflammation and proliferation.

Methods

Fifteen patients with MRI-presumed or recurrent meningiomas underwent a 60-min dynamic [68Ga]Ga-DOTA-TOC PET/CT before surgery. The PET data comprised maximum and mean standardized uptake values (SUVmax, SUVmean) with and without normalization to reference regions, and quantitative measurements derived from kinetic modelling using a reversible two-tissue compartment model with the fractional blood volume (VB). Expressions of SSTR2 and proliferation (Ki-67, phosphohistone-H3, proliferating cell nuclear antigen) were determined by immunohistochemistry and/or quantitative polymerase chain reaction (qPCR), while biomarkers of vascularization (vascular endothelial growth factor A (VEGFA), endothelial marker CD34) and inflammation (cytokine interleukin-18, microglia/macrophage-specific marker CD68) by qPCR.

Results

Histopathology revealed 12 World Health Organization (WHO) grade I and three WHO grade II meningiomas showing no link to SSTR2. The majority of [68Ga]Ga-DOTA-TOC PET metrics showed significant associations with SSTR2 protein, while all PET metrics were positively correlated with SSTR2 mRNA with the best results for mean tumour-to-blood ratio (TBRmean) (r = 0.757, P = 0.001) and SUVmean (r = 0.714, P = 0.003). Significant positive correlations were also found between [68Ga]Ga-DOTA-TOC PET metrics, and VEGFA and VB. SSTR2 mRNA was moderately correlated with VEGFA (r = 0.539, P = 0.038). Neither [68Ga]Ga-DOTA-TOC PET metrics nor SSTR2 were correlated with proliferation or inflammation.

Conclusion

[68Ga]Ga-DOTA-TOC accumulation in meningiomas is associated with SSTR2 binding and vascularization with TBRmean being the best PET metric for assessing SSTR2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

B2M:

Beta-2-microglobulin

BBB:

Blood-brain barrier

Ct:

Cycle threshold

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTA-TATE:

DOTA-D-Phe1-Tyr3-octreotate

DOTA-TOC:

DOTA-D-Phe1-Tyr3-octreotide

DOTA-NOC:

DOTA-1-Nal3-ocreotide

IDIF:

Image-derived input function

HPFs:

High-power fields

HPRT:

Hypoxanthine phosphoribosyltransferase 1

IL18:

Cytokine interleukin-18

PET:

Positron emission tomography

phh3:

Phosphohistone-H3

PRRT:

Peptide receptor radionuclide therapy

PVE:

Partial volume effect

qPCR:

Quantitative polymerase chain reaction

ROI:

Region of interest

SSTR:

Somatostatin receptor

SUV:

Standardized uptake value

TAC:

Time-activity curve

TBR:

Tumour-to-blood ratio

TNMR:

Tumour-to-neck muscle ratio

TPR:

Tumour-to-plasma ratio

TWBR:

Tumour-to-whole-blood ratio

V B :

Fractional blood volume

VOI:

Volume of interest

V T :

Total distribution volume

VEGFA:

Vascular endothelial growth factor A

NETs:

Neuroendocrine tumours

WHO:

World Health Organization

References

  1. Ostrum QT, Cioffi G, Gittleman H, et al. CBTRUS Statistical Report: Primary brain and central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 2019;21(Suppl 5):iv1–100.

    Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumurs of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    PubMed  Google Scholar 

  3. Backer-Grøndahl T, Moen BH, Torp SH. The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol. 2012;5(3):231–42.

    PubMed  PubMed Central  Google Scholar 

  4. Olar A, Wani KM, Sulman EP, et al. Mitotic index is an independent predictor of recurrence-free survival in meningiomas. Brain Pathol. 2015;25(3):266–75.

    PubMed  Google Scholar 

  5. Aghi MK, Carter BS, Cosgrove GR, et al. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurg. 2009;64:56–60.

    Google Scholar 

  6. Lou E, Sumrall AL, Turner S, et al. Bevacizumab therapy for adults with recurrent/progressive meningiomas: a retrospective series. J Neuro-Oncol. 2012;109(1):63–70.

    CAS  Google Scholar 

  7. Attia A, Chan MD, Mott RT, et al. Patterns of failure after treatment of atypical meningioma with gamma knife radiosurgery. J Neurosurg. 2012;108:179–85.

    Google Scholar 

  8. Mazza E, Brandes A, Zanon S, et al. Hydroxyurea with or without imatinib in the treatment of recurrent or progressive meningiomas: a randomized phase II trials by Gruppe Italiano Coorperativo di Neuro-On-cologia (GICNO). Cancer Chemother Pharmacol. 2016;77:115–20.

    CAS  PubMed  Google Scholar 

  9. Soto-Montenegro ML, Peña-Zalbidea S, Mateos-Oérez JM, et al. Meningiomas: a comparative study of 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE for molecular imaging in mice. PLoS One. 2014;9(11):e111624. https://doi.org/10.1371/journal.pone.0111624 eCollection 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Milker-Zabel S, Zabel-du Bois A, Henze M, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys. 2006;65:222–7.

    PubMed  Google Scholar 

  11. Afshar-Oronieh A, Giesel FL, Linhart HG, et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012;39:1409–15.

    Google Scholar 

  12. Bashir A, Ziebell M, Fugleholm K, Law I. A potential role of 68Ga-DOTATOC PET in modifying eligibility to surgery in patients with recurrent meningioma. J Nucl Med Radiat Ther. 2015;6:256. https://doi.org/10.4172/2155-9619.1000256.

    Article  CAS  Google Scholar 

  13. Hänscheid H, Sweeney RA, Flentje M, et al. PET SUV correlates with radionuclide uptake in peptide receptor therapy in meningioma. Eur J Nucl Med Mol Imaging. 2012;39(8):1284–8.

    PubMed  Google Scholar 

  14. Bartolomei M, Bodei L, De Cicco C, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. Eur J Nucl Med Mol Imaging. 2009;36(9):1407–16.

    CAS  PubMed  Google Scholar 

  15. Marincek N, Radojewski P, Dumont RA, et al. Somatostatin receptor-targeted radiopeptide therapy with 90Y-DOTATOC and 177Lu-DOTATOC in progressive meningioma: long-term results of a phase II clinical trial. J Nucl Med. 2015;56(2):171–6.

    PubMed  Google Scholar 

  16. Seystahl K, Stoecklein V, Schüller U, et al. Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to 68Ga-DOTATATE/-TOC uptake. Neuro-Oncology. 2016;18(11):1538–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rachinger W, Stoecklein VM, Terpolilli NA, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med. 2015;56:347–53.

    CAS  PubMed  Google Scholar 

  18. Dharmalingam P, Roopesh Kumar VR, Verma SK. Vascular endothelial growth factor expression and angiogenesis in various grades and subtypes of meningioma. Indian J Pathol Microbiol. 2013;56:349–54.

    PubMed  Google Scholar 

  19. Barresi V, Alafaci C, Salpietro F, Tucari G. SSTR2A immunohistochemical expression in human meningiomas: is there a correlation with the histological grade, proliferation or microvessel density? Oncol Rep. 2008;20:485–92.

    CAS  PubMed  Google Scholar 

  20. Sommerauer M, Burkhardt JK, Frontzek K, et al. 68Gallium-DOTATATE PET in meningioma: a reliable predictor of tumor growth rate? Neuro-Oncology. 2016;18(7):1021–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Graillon T, Romano D, Defilles C, et al. Octreotide therapy in meningiomas: in vitro study, clinical correlation, and literature review. J Neurosurg. 2017;127:660–9.

    CAS  PubMed  Google Scholar 

  22. Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35:500–16.

    PubMed  Google Scholar 

  23. Ruuska T, Ramírez Escalante Y, Vaittinen S, et al. Somatostatin receptor expression in lymphomas: a source of false diagnosis of neuroendocrine tumor at 68Ga-DOTANOC PET/CT imaging. Acta Oncol. 2018;57(2):283–9.

    CAS  PubMed  Google Scholar 

  24. Pedersen SF, Sandholt BV, Keller SH, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35(7):1696–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hofmann M, Maecke H, Börner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751–7.

    CAS  PubMed  Google Scholar 

  26. Koukouraki S, Strauss LG, Georgoulias V, et al. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC. Eur J Nucl Med Mol Imaging. 2006;33:1115–22.

    CAS  PubMed  Google Scholar 

  27. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864–70.

    CAS  PubMed  Google Scholar 

  28. Henze M, Schuhmacher J, Hipp P, et al. PET imaging of somatostatin receptors using [68Ga]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001;42:1053–6.

    CAS  PubMed  Google Scholar 

  29. Khalighi MM, Deller TW, Fan AP, et al. Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow Metab. 2018;38(1):126–35.

    CAS  PubMed  Google Scholar 

  30. Liptrot M, Adams KH, Martiny L, et al. Cluster analysis in kinetic modelling of the brain: a noninvasive alternative to arterial sampling. NeuroImage. 2004;21:483–93.

    PubMed  Google Scholar 

  31. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med. 2005;46:763–9.

    CAS  PubMed  Google Scholar 

  32. Innis RB, Cunningham VJ, Delforge J, et al. Consensus nomenclature for in vivo of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    CAS  PubMed  Google Scholar 

  33. Koukouraki S, Strauss LG, Georgoulias V, et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging. 2006;33:460–6.

    CAS  PubMed  Google Scholar 

  34. Ilan E, Sandström M, Velikyan I, et al. Parametric net influx rate images of (68)Ga-DOTATOC and (68)Ga-DOTATATE: quantitative accuracy and improved image contrast. J Nucl Med. 2017;58:744–9.

    CAS  PubMed  Google Scholar 

  35. Velikyan I, Sundin A, Sörensen J, et al. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med. 2014;55:204–10.

    CAS  PubMed  Google Scholar 

  36. Watson JC, Balster DA, Gebhardt BM, et al. Growing vascular endothelial cells express somatostatin subtype 2 receptors. Br J Cancer. 2001;85(2):266–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurosaki M, Saegert W, Abe T, Lüdecke DK. Expression of vascular endothelial growth factor in growth hormone-secreting pituitary adenomas: special reference to the octreotide treatment. Neurol Res. 2008;30(5):518–22.

    CAS  PubMed  Google Scholar 

  38. Vilaume K, Blanc M, Gouysse G, et al. VEGF secretion by neuroendocrine tumor cells is inhibited by octreotide and by inhibitors of the PI3K/AKT/mTOR pathway. Neuroendocrinology. 2010;91(3):268–78.

    Google Scholar 

  39. Preusser M, Hassler M, Birner P, et al. Microvascularization and expression of VEGF and its receptors in recurring meningiomas: pathobiological data in favor of anti-angiogenic therapy approaches. Clin Neuropathol. 2012;31(5):352–60.

    PubMed  Google Scholar 

  40. Kaley TJ, Wen P, Schiff D, et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro-Oncology. 2015;17(1):116–21.

    CAS  PubMed  Google Scholar 

  41. Ilan E, Velikyan I, Sandström, et al. Tumor-to-blood ratio for assessment of somatostatin receptor density in neuroendocrine tumors using 68Ga-DOTATOC and 68Ga-DOTATATE. J Nucl Med 2020;61(2):217–221.

  42. Pasquali D, Notaro A, Bonavolonta G, et al. Somatostatin receptor genes are expressed in lymphocytes from retroorbital tissues in Graves’ disease. J Clin Endocrinol Metab. 2002;87:5125–9.

    CAS  PubMed  Google Scholar 

  43. Menke JR, Raleigh DR, Gown AM, et al. Somatostatin receptor 2a is a more sensitive diagnostic marker of meningioma than epithelial membrane antigen. [letter]. Acta Neuropathol. 2015;130(3):441–3.

    PubMed  Google Scholar 

  44. Koper JW, Markstein R, Kohler C, et al. Somatostatin inhibits the activity of adenylate cyclase in cultured human meningioma cells and stimulates their growth. J Clin Endocrinol Metab. 1992;74(3):543–7.

    CAS  PubMed  Google Scholar 

  45. Pyronnet S, Bousquet C, Najib S, et al. Antitumor effects of somatostatin. Mol Cell Endocrinol. 2008;286:230–7.

    CAS  PubMed  Google Scholar 

  46. Zhou T, Xiao X, Xu B, et al. Overexpression of SSTR2 inhibited the growth of SSTR2-positive tumors via multiple signalling pathways. Acta Oncol. 2009;48(3):401–10.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all study participants and their relatives for their patience and willingness to contribute to the research. We would like to thank our technical staff, Sakeena Elkington and Loida Eunice Saxtoft, for the support with patient care, preparation of radiopharmaceuticals and acquisition of scans. In addition, the authors would like to thank the nuclear medicine specialist, Oriol Puig Calvo, for helping with kinetic modelling images for the study.

Funding

The work was financially supported by a grant from the Danish Cancer Society (R146-A9508-16-S2). The Siemens mMR hybrid PET/MR system at Copenhagen University Hospital Rigshospitalet was donated by the John and Birthe Meyer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Asma Bashir, Ian Law, Morten Ziebell and Kåre Fugleholm conceived the study design. Asma Bashir was responsible for patient recruitment. Asma Bashir and Ian Law contributed to the acquisition, analysis and interpretation of the PET/MRI data. Asma Bashir, Mark B. Vestergaard and Lisbeth Marner conducted full kinetic modelling using an image-derived input function. Tina Binderup performed quantitative polymerase chain reaction. Helle Broholm performed the histopathological examinations. Asma Bashir conducted the statistical analysis with the guidance from a senior statistician, Professor Lene Theil Skovgaard. Asma Bashir drafted the first and subsequent manuscripts. Asma Bashir, Mark B. Vestergaard, Helle Broholm, Tina Binderup, Lisbeth Marner, Morten Ziebell, Kåre Fugleholm, Tiit Mathiesen, Andreas Kjær and Ian Law contributed to the data interpretation, the increase in the intellectual content, provided input to revision of the manuscript and approved the final version.

Corresponding author

Correspondence to Asma Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Scientific Health Ethics Committee of the Capital region, Copenhagen, Denmark (reference number: H-15006091), and were based on the Declaration of Helsinki II (2013) and the principles of ‘good clinical practices’.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, A., Vestergaard, M.B., Binderup, T. et al. Pharmacokinetic analysis of [68Ga]Ga-DOTA-TOC PET in meningiomas for assessment of in vivo somatostatin receptor subtype 2. Eur J Nucl Med Mol Imaging 47, 2577–2588 (2020). https://doi.org/10.1007/s00259-020-04759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04759-1

Keywords

Navigation