Skip to main content

Advertisement

Log in

Molecular and circuit mechanisms regulating cocaine memory

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and triggers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signaling pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can be applied to the treatment of substance use disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340

    Article  CAS  Google Scholar 

  2. Grant S, London ED, Newlin DB et al (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci 93:12040–12045. https://doi.org/10.1073/pnas.93.21.12040

    Article  CAS  PubMed  Google Scholar 

  3. Milton AL, Everitt BJ (2012) The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci Biobehav Rev 36:1119–1139. https://doi.org/10.1016/J.NEUBIOREV.2012.01.002

    Article  PubMed  Google Scholar 

  4. Wang GJ, Volkow ND, Fowler JS et al (1999) Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci 64:775–784

    Article  CAS  Google Scholar 

  5. Torregrossa MM, Taylor JR (2013) Learning to forget: manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology 226:659–672. https://doi.org/10.1007/s00213-012-2750-9

    Article  CAS  PubMed  Google Scholar 

  6. See RE (2005) Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 526:140–146. https://doi.org/10.1016/j.ejphar.2005.09.034

    Article  CAS  PubMed  Google Scholar 

  7. Kerridge BT, Chou SP, Pickering RP et al (2019) Changes in the prevalence and correlates of cocaine use and cocaine use disorder in the United States, 2001–2002 and 2012–2013. Addict Behav 90:250–257. https://doi.org/10.1016/J.ADDBEH.2018.11.005

    Article  PubMed  Google Scholar 

  8. Di Chiara G, Bassareo V, Fenu S et al (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–241. https://doi.org/10.1016/j.neuropharm.2004.06.032

    Article  CAS  PubMed  Google Scholar 

  9. Torregrossa MM, Corlett PR, Taylor JR (2011) Aberrant learning and memory in addiction. Neurobiol Learn Mem 96:609–623. https://doi.org/10.1016/j.nlm.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanism of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. https://doi.org/10.1146/annurev.neuro.29.051605.113009

    Article  CAS  PubMed  Google Scholar 

  11. Mihindou C, Vouillac C, Koob GF, Ahmed SH (2011) Preclinical validation of a novel cocaine exposure therapy for relapse prevention. Biol Psychiatry 70:593–598. https://doi.org/10.1016/j.biopsych.2011.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  Google Scholar 

  13. Bergstrom HC, Pinard CR (2017) Corticolimbic circuits in learning, memory, and disease. J Neurosci Res 95:795–796. https://doi.org/10.1002/jnr.24006

    Article  CAS  PubMed  Google Scholar 

  14. Shiflett MW, Balleine BW (2011) Molecular substrates of action control in cortico-striatal circuits. Prog Neurobiol 95:1–13. https://doi.org/10.1016/j.pneurobio.2011.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith RJ, Laiks LS (2017) Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog Neuro-Psychopharmacol Biol Psychiatry 87:11–21. https://doi.org/10.1016/j.pnpbp.2017.09.003

    Article  Google Scholar 

  16. Everitt BJ, Robbins TW (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 37:1946–1954. https://doi.org/10.1016/j.neubiorev.2013.02.010

    Article  PubMed  Google Scholar 

  17. Hart G, Bradfield LA, Fok SY et al (2018) The bilateral Prefronto-striatal pathway is necessary for learning new goal-directed actions. Curr Biol 28:2218–2229.e7. https://doi.org/10.1016/j.cub.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  18. Murray JE, Belin-Rauscent A, Simon M et al (2015) Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat Commun 6:10088. https://doi.org/10.1038/ncomms10088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Hare J, Calakos N, Yin HH (2018) Recent insights into corticostriatal circuit mechanisms underlying habits. Curr Opin Behav Sci 20:40–46. https://doi.org/10.1016/J.COBEHA.2017.10.001

    Article  PubMed  Google Scholar 

  20. Murray JE, Belin D, Everitt BJ (2012) Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37:2456–2466. https://doi.org/10.1038/npp.2012.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woodhead S, Robbins T (2017) The relative contribution of goal-directed and habit systems to psychiatric disorders. Psychiatr Danub 29:203–213

    PubMed  Google Scholar 

  22. Kutlu MG, Gould TJ (2016) Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 23:515–533. https://doi.org/10.1101/lm.042192.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Basu J, Siegelbaum SA (2015) The corticohippocampal circuit, synaptic plasticity, and memory. Cold Spring Harb Perspect Biol 7:a021733. https://doi.org/10.1101/cshperspect.a021733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gurden H, Takita M, Rè Se T, Jay M (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20(22):RC106

    Article  CAS  Google Scholar 

  25. Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78:637–647

    Article  CAS  Google Scholar 

  26. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126. https://doi.org/10.1146/annurev.neuro.25.112701.142758

    Article  CAS  PubMed  Google Scholar 

  27. Baez MV, Cercato MC, Jerusalinsky DA (2018) NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast 2018:1–11. https://doi.org/10.1155/2018/5093048

    Article  CAS  Google Scholar 

  28. Rich MT, Torregrossa MM (2018) Molecular and synaptic mechanisms regulating drug-associated memories: towards a bidirectional treatment strategy. Brain Res Bull 141:58–71. https://doi.org/10.1016/J.BRAINRESBULL.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z, Kujawa SG, Sewell WF (2007) Auditory sensitivity regulation via rapid changes in expression of surface AMPA receptors. Nat Neurosci 10:1238–1240. https://doi.org/10.1038/nn1974

    Article  CAS  PubMed  Google Scholar 

  30. Collin C, Miyaguchi K, Segal M (1997) Dendritic Spine density and LTP Induction in cultured hippocampal slices. J Neurophysiol 77:1614–1623. https://doi.org/10.1152/jn.1997.77.3.1614

    Article  CAS  PubMed  Google Scholar 

  31. D’Alcantara P, Schiffmann SN, Swillens S (2003) Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways. Eur J Neurosci 17:2521–2528. https://doi.org/10.1046/j.1460-9568.2003.02693.x

    Article  PubMed  Google Scholar 

  32. Li L, Stefan MI, Le Novère N (2012) Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. PLoS ONE 7:e43810. https://doi.org/10.1371/journal.pone.0043810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Minatohara K, Akiyoshi M, Okuno H (2016) Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci 8:78. https://doi.org/10.3389/fnmol.2015.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alaghband Y, Bredy TW, Wood MA (2016) The role of active DNA demethylation and Tet enzyme function in memory formation and cocaine action. Neurosci Lett 625:40–46. https://doi.org/10.1016/j.neulet.2016.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peixoto L, Abel T (2013) The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38:62–76. https://doi.org/10.1038/npp.2012.86

    Article  CAS  PubMed  Google Scholar 

  36. Morris RGM, Moser EI, Riedel G et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond Ser B Biol Sci 358:773–786. https://doi.org/10.1098/rstb.2002.1264

    Article  CAS  Google Scholar 

  37. Bisaz R, Travaglia A, Alberini CM (2014) The neurobiological bases of memory formation: from physiological conditions to psychopathology. Psychopathology 47:347–356. https://doi.org/10.1159/000363702

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cervo L, Mukherjee S, Bertaglia A, Samanin R (1997) Protein kinases A and C are involved in the mechanisms underlying consolidation of cocaine place conditioning. Brain Res 775:30–36

    Article  CAS  Google Scholar 

  39. Robbins TW, Everitt BJ (2002) Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem 78:625–636

    Article  CAS  Google Scholar 

  40. See RE (2002) Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacol Biochem Behav 71:517–529

    Article  CAS  Google Scholar 

  41. Meyers RA, Zavala AR, Speer CM, Neisewander JL (2006) Dorsal hippocampus inhibition disrupts acquisition and expression, but not consolidation, of cocaine conditioned place preference. Behav Neurosci 120:401–412. https://doi.org/10.1037/0735-7044.120.2.401

    Article  CAS  PubMed  Google Scholar 

  42. Arguello AA, Richardson BD, Hall JL et al (2017) Role of a lateral orbital frontal cortex-basolateral amygdala circuit in cue-induced cocaine-seeking behaviour. Neuropsychopharmacology 42:727–735. https://doi.org/10.1038/npp.2016.157

    Article  CAS  PubMed  Google Scholar 

  43. Saunders BT, Richard JM, Margolis EB, Janak PH (2018) Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat Neurosci 21:1072–1083. https://doi.org/10.1038/s41593-018-0191-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liljeholm M, O’Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci 16:467–475. https://doi.org/10.1016/J.TICS.2012.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hitchcock LN, Lattal KM (2018) Involvement of the dorsal hippocampus in expression and extinction of cocaine-induced conditioned place preference. Hippocampus 28:226–238. https://doi.org/10.1002/hipo.22826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kramar CP, Flavia Barbano M, Medina JH (2014) Dopamine D1/D5 receptors in the dorsal hippocampus are required for the acquisition and expression of a single trial cocaine-associated memory. Neurobiol Learn Mem 116:172–180. https://doi.org/10.1016/j.nlm.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  47. Itzhak Y, Liddie S, Anderson KL (2013) Sodium butyrate-induced histone acetylation strengthens the expression of cocaine-associated contextual memory. Neurobiol Learn Mem 102:34–42. https://doi.org/10.1016/j.nlm.2013.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han J, Li Y, Wang D et al (2010) Effect of 5-aza-2-deoxycytidine microinjecting into hippocampus and prelimbic cortex on acquisition and retrieval of cocaine-induced place preference in C57BL/6 mice. Eur J Pharmacol 642:93–98. https://doi.org/10.1016/J.EJPHAR.2010.05.050

    Article  CAS  PubMed  Google Scholar 

  49. Lai Y-T, Fan H-Y, Cherng CG et al (2008) Activation of amygdaloid PKC pathway is necessary for conditioned cues-provoked cocaine memory performance. Neurobiol Learn Mem 90:164–170. https://doi.org/10.1016/j.nlm.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  50. Li F-Q, Xue Y-X, Wang J-S et al (2010) Basolateral amygdala Cdk5 activity mediates consolidation and reconsolidation of memories for cocaine cues. J Neurosci 30:10351–10359. https://doi.org/10.1523/JNEUROSCI.2112-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feltenstein M, See R (2007) NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol Learn Mem 88:435–444. https://doi.org/10.1016/j.nlm.2007.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rich MT, Huang YH, Torregrossa MM (2019) Plasticity at thalamo-amygdala synapses regulates cocaine-cue memory formation and extinction. Cell Rep 26:1010–1020. https://doi.org/10.1016/j.celrep.2018.12.105(e5)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schafe GE, LeDoux JE (2000) Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 20:RC6. https://doi.org/10.1523/JNEUROSCI.20-18-J0003.2000

    Article  Google Scholar 

  54. Siddiqui SA, Singh S, Ugale R et al (2019) Regulation of HDAC1 and HDAC2 during consolidation and extinction of fear memory. Brain Res Bull 150:86–101. https://doi.org/10.1016/j.brainresbull.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  55. Zhang T, Yanagida J, Kamii H et al (2019) Glutamatergic neurons in the medial prefrontal cortex mediate the formation and retrieval of cocaine-associated memories in mice. Addict Biol. https://doi.org/10.1111/adb.12723

    Article  PubMed  Google Scholar 

  56. Slaker M, Churchill L, Todd RP et al (2015) Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci 35:4190–4202. https://doi.org/10.1523/JNEUROSCI.3592-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu SS-J, Liu Y-W, Yu L (2015) Medial prefrontal cannabinoid CB1 receptors modulate consolidation and extinction of cocaine-associated memory in mice. Psychopharmacology 232:1803–1815. https://doi.org/10.1007/s00213-014-3812-y

    Article  CAS  PubMed  Google Scholar 

  58. Ding Z-B, Wu P, Luo Y-X et al (2013) Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats. Psychopharmacology 228:427–437. https://doi.org/10.1007/s00213-013-3050-8

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Luo Y, He Y et al (2010) Nucleus accumbens core mammalian target of rapamycin signaling pathway is critical for cue-induced reinstatement of cocaine seeking in rats. J Neurosci 30:12632–12641. https://doi.org/10.1523/JNEUROSCI.1264-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar A, Choi K-H, Renthal W et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314. https://doi.org/10.1016/j.neuron.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  61. Rogge GA, Singh H, Dang R, Wood MA (2013) HDAC3 is a negative regulator of cocaine-context-associated memory formation. J Neurosci 33:6623–6632. https://doi.org/10.1523/JNEUROSCI.4472-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Taniguchi M, Carreira MB, Smith LN et al (2012) Histone deacetylase 5 limits cocaine reward through cAMP-induced nuclear import. Neuron 73:108–120. https://doi.org/10.1016/j.neuron.2011.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Malvaez M, Mhillaj E, Matheos DP et al (2011) CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviours. J Neurosci 31:16941–16948. https://doi.org/10.1523/JNEUROSCI.2747-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. White AO, Kramár EA, López AJ et al (2016) BDNF rescues BAF53b-dependent synaptic plasticity and cocaine-associated memory in the nucleus accumbens. Nat Commun 7:11725. https://doi.org/10.1038/ncomms11725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang T, Deyama S, Domoto M et al (2018) Activation of GABAergic neurons in the nucleus accumbens mediates the expression of cocaine-associated memory. Biol Pharm Bull 41:1084–1088. https://doi.org/10.1248/bpb.b18-00221

    Article  CAS  PubMed  Google Scholar 

  66. Everitt BJ, Belin D, Economidou D et al (2008) Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc B Biol Sci 363:3125–3135. https://doi.org/10.1098/rstb.2008.0089

    Article  Google Scholar 

  67. Vanderschuren LJMJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25:8665–8670. https://doi.org/10.1523/JNEUROSCI.0925-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zapata A, Minney VL, Shippenberg TS (2010) Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci 30:15457–15463. https://doi.org/10.1523/JNEUROSCI.4072-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gourley SL, Taylor JR (2016) Going and stopping: dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci 19:656–664. https://doi.org/10.1038/nn.4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roozendaal B, McGaugh JL (2011) Memory modulation. Behav Neurosci 125:797–824. https://doi.org/10.1037/a0026187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bacciottini L, Passani MB, Mannaioni PF, Blandina P (2001) Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 124:183–194. https://doi.org/10.1016/S0166-4328(01)00230-3

    Article  CAS  PubMed  Google Scholar 

  72. Zhou S, Xue L, Wang X et al (2012) NMDA receptor glycine modulatory site in the ventral tegmental area regulates the acquisition, retrieval, and reconsolidation of cocaine reward memory. Psychopharmacology 221:79–89. https://doi.org/10.1007/s00213-011-2551-6

    Article  CAS  PubMed  Google Scholar 

  73. Kramar CP, Chefer VI, Wise RA et al (2014) Dopamine in the dorsal hippocampus impairs the late consolidation of cocaine-associated memory. Neuropsychopharmacology 39:1645–1653. https://doi.org/10.1038/npp.2014.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shinohara F, Asaoka Y, Kamii H et al (2019) Stress augments the rewarding memory of cocaine via the activation of brainstem-reward circuitry. Addict Biol 24:509–521. https://doi.org/10.1111/adb.12617

    Article  CAS  PubMed  Google Scholar 

  75. Fitzgerald MK, Otis JM, Mueller D (2016) Dissociation of β1- and β2-adrenergic receptor subtypes in the retrieval of cocaine-associated memory. Behav Brain Res 296:94–99. https://doi.org/10.1016/j.bbr.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  76. Otis JM, Mueller D (2011) Inhibition of β-adrenergic receptors induces a persistent deficit in retrieval of a cocaine-associated memory providing protection against reinstatement. Neuropsychopharmacology 36:1912–1920. https://doi.org/10.1038/npp.2011.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zacarias MS, Ramos AC, Alves DR, Galduróz JCF (2012) Biperiden (an M1 antagonist) reduces memory consolidation of cocaine-conditioned place preference. Neurosci Lett 513:129–131. https://doi.org/10.1016/j.neulet.2012.01.073

    Article  CAS  PubMed  Google Scholar 

  78. Furlong TM, Corbit LH, Brown RA, Balleine BW (2018) Methamphetamine promotes habitual action and alters the density of striatal glutamate receptor and vesicular proteins in dorsal striatum. Addict Biol 23:857–867. https://doi.org/10.1111/adb.12534

    Article  CAS  PubMed  Google Scholar 

  79. Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26:3805–3812. https://doi.org/10.1523/JNEUROSCI.4305-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nordquist RE, Voorn P, de Mooij-van Malsen JG et al (2007) Augmented reinforcer value and accelerated habit formation after repeated amphetamine treatment. Eur Neuropsychopharmacol 17:532–540. https://doi.org/10.1016/j.euroneuro.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  81. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489. https://doi.org/10.1038/nn1579

    Article  CAS  PubMed  Google Scholar 

  82. Sorg BA (2012) Reconsolidation of drug memories. Neurosci Biobehav Rev 36:1400–1417. https://doi.org/10.1016/j.neubiorev.2012.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  83. Alberini CM (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28:51–56. https://doi.org/10.1016/j.tins.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  84. Lee JLC, Nader K, Schiller D (2017) An update on memory reconsolidation updating. Trends Cogn Sci 21:531–545. https://doi.org/10.1016/j.tics.2017.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  85. Goodman J, Ressler RL, Packard MG (2016) The dorsolateral striatum selectively mediates extinction of habit memory. Neurobiol Learn Mem 136:54–62. https://doi.org/10.1016/J.NLM.2016.09.012

    Article  PubMed  Google Scholar 

  86. Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275. https://doi.org/10.1038/nrn2090

    Article  CAS  PubMed  Google Scholar 

  87. Taylor JR, Olausson P, Quinn JJ, Torregrossa MM (2009) Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 56(Suppl 1):186–195. https://doi.org/10.1016/j.neuropharm.2008.07.027

    Article  CAS  PubMed  Google Scholar 

  88. Milton A (2013) Drink, drugs and disruption: memory manipulation for the treatment of addiction. Curr Opin Neurobiol 23:706–712. https://doi.org/10.1016/J.CONB.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  89. Brown TE, Forquer MR, Cocking DL et al (2007) Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn Mem 14:214–223. https://doi.org/10.1101/lm.476207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee JLC, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science (80–) 304:839–843. https://doi.org/10.1126/science.1095760

    Article  CAS  Google Scholar 

  91. Walsh KH, Das RK, Saladin ME, Kamboj SK (2018) Modulation of naturalistic maladaptive memories using behavioural and pharmacological reconsolidation-interfering strategies: a systematic review and meta-analysis of clinical and ‘sub-clinical’ studies. Psychopharmacology 235:2507–2527. https://doi.org/10.1007/s00213-018-4983-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alaghband Y, O’Dell SJ, Azarnia S et al (2014) Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory. Neurobiol Learn Mem 116:79–89. https://doi.org/10.1016/j.nlm.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Arguello AA, Hodges MA, Wells AM et al (2014) Involvement of amygdalar protein kinase A, but not calcium/calmodulin-dependent protein kinase II, in the reconsolidation of cocaine-related contextual memories in rats. Psychopharmacology 231:55–65. https://doi.org/10.1007/s00213-013-3203-9

    Article  CAS  PubMed  Google Scholar 

  94. Lee JLC, Milton AL, Everitt BJ (2006) Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci 26:5881–5887. https://doi.org/10.1523/JNEUROSCI.0323-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ramirez DR, Bell GH, Lasseter HC et al (2009) Dorsal hippocampal regulation of memory reconsolidation processes that facilitate drug context-induced cocaine-seeking behavior in rats. Eur J Neurosci 30:901–912. https://doi.org/10.1111/j.1460-9568.2009.06889.x

    Article  PubMed  PubMed Central  Google Scholar 

  96. Alaghband Y, Marshall JF (2013) Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory. Psychopharmacology 226:707–719. https://doi.org/10.1007/s00213-012-2793-y

    Article  CAS  PubMed  Google Scholar 

  97. Fricks-Gleason AN, Marshall JF (2008) Post-retrieval -adrenergic receptor blockade: effects on extinction and reconsolidation of cocaine-cue memories. Learn Mem 15:643–648. https://doi.org/10.1101/lm.1054608

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fan H-Y, Cherng CG, Yang F-Y et al (2010) Systemic treatment with protein synthesis inhibitors attenuates the expression of cocaine memory. Behav Brain Res 208:522–527. https://doi.org/10.1016/j.bbr.2009.12.034

    Article  CAS  PubMed  Google Scholar 

  99. Itzhak Y, Anderson KL (2007) Memory reconsolidation of cocaine-associated context requires nitric oxide signaling. Synapse 61:1002–1005. https://doi.org/10.1002/syn.20446

    Article  CAS  PubMed  Google Scholar 

  100. Kelley JB, Anderson KL, Itzhak Y (2007) Long-term memory of cocaine-associated context: disruption and reinstatement. NeuroReport 18:777–780. https://doi.org/10.1097/WNR.0b013e3280c1e2e7

    Article  CAS  PubMed  Google Scholar 

  101. Bernardi RE, Lattal KM, Berger SP (2007) Anisomycin disrupts a contextual memory following reactivation in a cocaine-induced locomotor activity paradigm. Behav Neurosci 121:156–163. https://doi.org/10.1037/0735-7044.121.1.156

    Article  CAS  PubMed  Google Scholar 

  102. Bernardi RE, Lattal KM, Berger SP (2006) Postretrieval propranolol disrupts a cocaine conditioned place preference. NeuroReport 17:1443–1447. https://doi.org/10.1097/01.wnr.0000233098.20655.26

    Article  CAS  PubMed  Google Scholar 

  103. Shi X, Miller JS, Harper LJ et al (2014) Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology 231:3109–3118. https://doi.org/10.1007/s00213-014-3491-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stringfield SJ, Higginbotham JA, Wang R et al (2017) Role of glucocorticoid receptor-mediated mechanisms in cocaine memory enhancement. Neuropharmacology 123:349–358. https://doi.org/10.1016/j.neuropharm.2017.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yan Y, Kong H, Wu EJ et al (2013) Dopamine D3 receptors regulate reconsolidation of cocaine memory. Neuroscience 241:32–40. https://doi.org/10.1016/j.neuroscience.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Itzhak Y (2008) Role of the NMDA receptor and nitric oxide in memory reconsolidation of cocaine-induced conditioned place preference in mice. Ann NY Acad Sci 1139:350–357. https://doi.org/10.1196/annals.1432.051

    Article  CAS  PubMed  Google Scholar 

  107. Brown TE, Lee BR, Sorg BA (2008) The NMDA antagonist MK-801 disrupts reconsolidation of a cocaine-associated memory for conditioned place preference but not for self-administration in rats. Learn Mem 15:857–865. https://doi.org/10.1101/lm.1152808

    Article  PubMed  PubMed Central  Google Scholar 

  108. Liu C, Sun X, Wang Z et al (2018) Retrieval-induced upregulation of Tet3 in pyramidal neurons of the dorsal hippocampus mediates cocaine-associated memory reconsolidation. Int J Neuropsychopharmacol 21:255–266. https://doi.org/10.1093/ijnp/pyx099

    Article  CAS  PubMed  Google Scholar 

  109. Wells AM, Xie X, Higginbotham JA et al (2016) Contribution of an SFK-mediated signaling pathway in the dorsal hippocampus to cocaine-memory reconsolidation in rats. Neuropsychopharmacology 41:675–685. https://doi.org/10.1038/npp.2015.217

    Article  CAS  PubMed  Google Scholar 

  110. Fuchs RA, Bell GH, Ramirez DR et al (2009) Basolateral amygdala involvement in memory reconsolidation processes that facilitate drug context-induced cocaine seeking. Eur J Neurosci 30:889–900. https://doi.org/10.1111/j.1460-9568.2009.06888.x

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wells AM, Arguello AA, Xie X et al (2013) Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats. Neuropsychopharmacology 38:753–762. https://doi.org/10.1038/npp.2012.238

    Article  CAS  PubMed  Google Scholar 

  112. Wu P, Xue Y, Ding Z et al (2011) Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory. J Neurochem 118:113–125. https://doi.org/10.1111/j.1471-4159.2011.07277.x

    Article  CAS  PubMed  Google Scholar 

  113. Otis JM, Dashew KB, Mueller D (2013) Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J Neurosci 33:1271–1281. https://doi.org/10.1523/JNEUROSCI.3463-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wells AM, Lasseter HC, Xie X et al (2011) Interaction between the basolateral amygdala and dorsal hippocampus is critical for cocaine memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior in rats. Learn Mem 18:693–702. https://doi.org/10.1101/lm.2273111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884. https://doi.org/10.1016/j.neuron.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  116. Li Y, Ge S, Li N et al (2016) NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation. Neuroscience 315:45–69. https://doi.org/10.1016/j.neuroscience.2015.11.063

    Article  CAS  PubMed  Google Scholar 

  117. Ren Z-Y, Liu M-M, Xue Y-X et al (2013) A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology 38:778–790. https://doi.org/10.1038/npp.2012.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Otis JM, Fitzgerald MK, Yousuf H et al (2018) Prefrontal neuronal excitability maintains cocaine-associated memory during retrieval. Front Behav Neurosci 12:119. https://doi.org/10.3389/fnbeh.2018.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang Y-X, Akumuo RC, España RA et al (2018) The histone demethylase KDM6B in the medial prefrontal cortex epigenetically regulates cocaine reward memory. Neuropharmacology 141:113–125. https://doi.org/10.1016/j.neuropharm.2018.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Monsey MS, Sanchez H, Taylor JR (2017) The naturally occurring compound Garcinia Indica selectively impairs the reconsolidation of a cocaine-associated memory. Neuropsychopharmacology 42:587–597. https://doi.org/10.1038/npp.2016.117

    Article  CAS  PubMed  Google Scholar 

  121. Dunbar AB, Taylor JR (2016) Inhibition of protein synthesis but not β-adrenergic receptors blocks reconsolidation of a cocaine-associated cue memory. Learn Mem 23:391–398. https://doi.org/10.1101/lm.042838.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shi H-S, Luo Y-X, Yin X et al (2015) Reconsolidation of a cocaine associated memory requires DNA methyltransferase activity in the basolateral amygdala. Sci Rep 5:13327. https://doi.org/10.1038/srep13327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sanchez H, Quinn JJ, Torregrossa MM, Taylor JR (2010) Reconsolidation of a cocaine-associated stimulus requires amygdalar protein kinase A. J Neurosci 30:4401–4407. https://doi.org/10.1523/JNEUROSCI.3149-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wan X, Torregrossa MM, Sanchez H et al (2014) Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine. PLoS ONE 9:e107359. https://doi.org/10.1371/journal.pone.0107359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee JLC, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behaviour. Neuron 47:795–801. https://doi.org/10.1016/j.neuron.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  126. Rich MT, Abbott TB, Chung L et al (2016) Phosphoproteomic analysis reveals a novel mechanism of CaMKIIα regulation inversely induced by cocaine memory extinction versus reconsolidation. J Neurosci 36:7613–7627. https://doi.org/10.1523/JNEUROSCI.1108-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Torregrossa MM, MacDonald M, Stone KL et al (2019) Phosphoproteomic analysis of cocaine memory extinction and reconsolidation in the nucleus accumbens. Psychopharmacology 236:531–543. https://doi.org/10.1007/s00213-018-5071-9

    Article  CAS  PubMed  Google Scholar 

  128. Hafenbreidel M, Rafa Todd C, Mueller D (2017) Infralimbic GluN2A-containing NMDA receptors modulate reconsolidation of cocaine self-administration memory. Neuropsychopharmacology 42:1113–1125. https://doi.org/10.1038/npp.2016.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Milton AL, Lee JLC, Butler VJ et al (2008) Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviours. J Neurosci 28:8230–8237. https://doi.org/10.1523/JNEUROSCI.1723-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Milton AL, Lee JLC, Everitt BJ (2008) Reconsolidation of appetitive memories for both natural and drug reinforcement is dependent on β-adrenergic receptors. Learn Mem 15:88–92. https://doi.org/10.1101/lm.825008

    Article  PubMed  Google Scholar 

  131. Sorg BA, Todd RP, Slaker M, Churchill L (2015) Anisomycin in the medial prefrontal cortex reduces reconsolidation of cocaine-associated memories in the rat self-administration model. Neuropharmacology 92:25–33. https://doi.org/10.1016/j.neuropharm.2014.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yan Y, Newman AH, Xu M (2014) Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration. Neuroscience 278:154–164. https://doi.org/10.1016/j.neuroscience.2014.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Debiec J, Doyere V, Nader K, LeDoux JE (2006) Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proc Natl Acad Sci 103:3428–3433. https://doi.org/10.1073/pnas.0507168103

    Article  CAS  PubMed  Google Scholar 

  134. Luo Y, Xue Y, Liu J et al (2015) A novel UCS memory retrieval-extinction procedure to inhibit relapse to drug seeking. Nat Commun 6:7675. https://doi.org/10.1038/ncomms8675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dunbar AB, Taylor JR (2017) Garcinol blocks the reconsolidation of multiple cocaine-paired cues after a single cocaine-reactivation session. Neuropsychopharmacology 42:1884. https://doi.org/10.1038/NPP.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Debiec J, Díaz-Mataix L, Bush DEA et al (2010) The amygdala encodes specific sensory features of an aversive reinforcer. Nat Neurosci 13:536–537. https://doi.org/10.1038/nn.2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Doyère V, Debiec J, Monfils M-H et al (2007) Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nat Neurosci 10:414–416. https://doi.org/10.1038/nn1871

    Article  CAS  PubMed  Google Scholar 

  138. Goltseker K, Bolotin L, Barak S (2017) Counterconditioning during reconsolidation prevents relapse of cocaine memories. Neuropsychopharmacology 42:716–726. https://doi.org/10.1038/npp.2016.140

    Article  CAS  PubMed  Google Scholar 

  139. Kroes MCW, Schiller D, LeDoux JE, Phelps EA (2016) Translational approaches targeting reconsolidation. Curr Top Behav Neurosci 28:197–230. https://doi.org/10.1007/7854_2015_5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Elsey J, Kindt M (2016) Manipulating human memory through reconsolidation: ethical implications of a new therapeutic approach. AJOB Neurosci 7:225–236. https://doi.org/10.1080/21507740.2016.1218377

    Article  Google Scholar 

  141. Lázaro-Muñoz G, Diaz-Mataix L (2016) Manipulating human memory through reconsolidation: stones left unturned. AJOB Neurosci 7:244–247. https://doi.org/10.1080/21507740.2016.1251989

    Article  PubMed  PubMed Central  Google Scholar 

  142. Saladin ME, Gray KM, McRae-Clark AL et al (2013) A double blind, placebo-controlled study of the effects of post-retrieval propranolol on reconsolidation of memory for craving and cue reactivity in cocaine dependent humans. Psychopharmacology 226:721–737. https://doi.org/10.1007/s00213-013-3039-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494. https://doi.org/10.1101/lm.78804

    Article  PubMed  Google Scholar 

  144. Fuchs RA, Feltenstein MW, See RE (2006) The role of the basolateral amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent conditioned cued reinstatement of cocaine seeking. Eur J Neurosci 23:2809–2813. https://doi.org/10.1111/j.1460-9568.2006.04806.x

    Article  PubMed  Google Scholar 

  145. Suzuki A, Josselyn SA, Frankland PW et al (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795. https://doi.org/10.1523/JNEUROSCI.5491-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Merlo E, Milton AL, Goozee ZY et al (2014) Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence. J Neurosci 34:2422–2431. https://doi.org/10.1523/JNEUROSCI.4001-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Thanos PK, Bermeo C, Wang G-J, Volkow ND (2009) d-Cycloserine accelerates the extinction of cocaine-induced conditioned place preference in C57bL/c mice. Behav Brain Res 199:345–349. https://doi.org/10.1016/j.bbr.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  148. Kim JH, Perry C, Luikinga S et al (2015) Extinction of a cocaine-taking context that protects against drug-primed reinstatement is dependent on the metabotropic glutamate 5 receptor. Addict Biol 20:482–489. https://doi.org/10.1111/adb.12142

    Article  CAS  PubMed  Google Scholar 

  149. Madsen HB, Zbukvic IC, Luikinga SJ et al (2017) Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats. Neurobiol Learn Mem 143:88–93. https://doi.org/10.1016/J.NLM.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  150. Torregrossa MM, Sanchez H, Taylor JR (2010) d-cycloserine reduces the context specificity of pavlovian extinction of cocaine cues through actions in the nucleus accumbens. J Neurosci 30:10526–10533. https://doi.org/10.1523/JNEUROSCI.2523-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hammond S, Seymour CM, Burger A, Wagner JJ (2013) d-serine facilitates the effectiveness of extinction to reduce drug-primed reinstatement of cocaine-induced conditioned place preference. Neuropharmacology 64:464–471. https://doi.org/10.1016/j.neuropharm.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  152. Botreau F, Paolone G, Stewart J (2006) d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 172:173–178. https://doi.org/10.1016/j.bbr.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  153. Paolone G, Botreau F, Stewart J (2009) The facilitative effects of d-cycloserine on extinction of a cocaine-induced conditioned place preference can be long lasting and resistant to reinstatement. Psychopharmacology 202:403–409. https://doi.org/10.1007/s00213-008-1280-y

    Article  CAS  PubMed  Google Scholar 

  154. Thanos PK, Subrize M, Lui W et al (2011) D-cycloserine facilitates extinction of cocaine self-administration in c57 mice. Synapse 65:1099–1105. https://doi.org/10.1002/syn.20944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gass JT, Olive MF (2009) Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol Psychiatry 65:717–720. https://doi.org/10.1016/j.biopsych.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  156. Tsai Y, Tzeng W-Y, Cherng CG et al (2016) Effects of sodium benzoate treatment in combination with an extinction training on the maintenance of cocaine-supported memory. Chin J Physiol 59:56–61. https://doi.org/10.4077/CJP.2016.BAE378

    Article  CAS  PubMed  Google Scholar 

  157. Van den Oever MC, Rotaru DC, Heinsbroek JA et al (2013) Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory. J Neurosci 33:18225–18233. https://doi.org/10.1523/JNEUROSCI.2412-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Otis JM, Fitzgerald MK, Mueller D (2014) Infralimbic BDNF/TrkB enhancement of GluN2B currents facilitates extinction of a cocaine-conditioned place preference. J Neurosci 34:6057–6064. https://doi.org/10.1523/JNEUROSCI.4980-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang B, Li Y, Cheng D et al (2018) β-Arrestin–biased β-adrenergic signaling promotes extinction learning of cocaine reward memory. Sci Signal 11:eaam5402. https://doi.org/10.1126/scisignal.aam5402

    Article  PubMed  Google Scholar 

  160. Brenhouse HC, Thompson BS, Sonntag KC, Andersen SL (2015) Extinction and reinstatement to cocaine-associated cues in male and female juvenile rats and the role of D1 dopamine receptor. Neuropharmacology 95:22–28. https://doi.org/10.1016/j.neuropharm.2015.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ashby CR, Rice OV, Heidbreder CA, Gardner EL (2015) The selective dopamine D3 receptor antagonist SB-277011A significantly accelerates extinction to environmental cues associated with cocaine-induced place preference in male sprague-dawley rats. Synapse 69:512–514. https://doi.org/10.1002/syn.21839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Galaj E, Haynes J, Nisanov R et al (2016) The dopamine D3 receptor antagonist, SR 21502, facilitates extinction of cocaine conditioned place preference. Drug Alcohol Depend 159:263–266. https://doi.org/10.1016/j.drugalcdep.2015.11.030

    Article  CAS  PubMed  Google Scholar 

  163. Ananth M, Hetelekides EM, Hamilton J, Thanos PK (2019) Dopamine D4 receptor gene expression plays important role in extinction and reinstatement of cocaine-seeking behavior in mice. Behav Brain Res 365:1–6. https://doi.org/10.1016/j.bbr.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  164. Heidbreder CA, Gardner EL, Xi Z-X et al (2005) The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Brain Res Rev 49:77–105. https://doi.org/10.1016/j.brainresrev.2004.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee J, Finkelstein J, Choi JY, Witten IB (2016) Linking cholinergic interneurons, synaptic plasticity, and behaviour during the extinction of a cocaine-context association. Neuron 90:1071–1085. https://doi.org/10.1016/j.neuron.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sørensen G, Wörtwein G, Fink-Jensen A, Woldbye DPD (2013) Neuropeptide Y Y5 receptor antagonism causes faster extinction and attenuates reinstatement in cocaine-induced place preference. Pharmacol Biochem Behav 105:151–156. https://doi.org/10.1016/j.pbb.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  167. Malvaez M, Sanchis-Segura C, Vo D et al (2010) Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67:36–43. https://doi.org/10.1016/j.biopsych.2009.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Malvaez M, McQuown SC, Rogge GA et al (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci 110:2647–2652. https://doi.org/10.1073/pnas.1213364110

    Article  PubMed  Google Scholar 

  169. Raybuck JD, McCleery EJ, Cunningham CL et al (2013) The histone deacetylase inhibitor sodium butyrate modulates acquisition and extinction of cocaine-induced conditioned place preference. Pharmacol Biochem Behav 106:109–116. https://doi.org/10.1016/j.pbb.2013.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kearns DN, Tunstall BJ, Weiss SJ (2012) Deepened extinction of cocaine cues. Drug Alcohol Depend 124:283–287. https://doi.org/10.1016/j.drugalcdep.2012.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Torregrossa MM, Gordon J, Taylor JR (2013) Double dissociation between the anterior cingulate cortex and nucleus accumbens core in encoding the context versus the content of Pavlovian cocaine cue extinction. J Neurosci 33:8370–8377. https://doi.org/10.1523/JNEUROSCI.0489-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Perry CJ, Reed F, Zbukvic IC et al (2016) The metabotropic glutamate 5 receptor is necessary for extinction of cocaine-associated cues. Br J Pharmacol 173:1085–1094. https://doi.org/10.1111/bph.13437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Buffalari DM, Feltenstein MW, See RE (2013) The effects of varied extinction procedures on contingent cue-induced reinstatement in Sprague-Dawley rats. Psychopharmacology 230:319–327. https://doi.org/10.1007/s00213-013-3156-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Szalay JJ, Jordan CJ, Kantak KM (2013) Neural regulation of the time course for cocaine-cue extinction consolidation in rats. Eur J Neurosci 37:269–277. https://doi.org/10.1111/ejn.12035

    Article  PubMed  Google Scholar 

  175. Szalay JJ, Morin ND, Kantak KM (2011) Involvement of the dorsal subiculum and rostral basolateral amygdala in cocaine cue extinction learning in rats. Eur J Neurosci 33:1299–1307. https://doi.org/10.1111/j.1460-9568.2010.07581.x

    Article  PubMed  PubMed Central  Google Scholar 

  176. Nic Dhonnchadha BÁ, Lovascio BF, Shrestha N et al (2012) Changes in expression of c-Fos protein following cocaine-cue extinction learning. Behav Brain Res 234:100–106. https://doi.org/10.1016/j.bbr.2012.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nic Dhonnchadha BÁ, Szalay JJ, Achat-Mendes C et al (2010) D-cycloserine deters reacquisition of cocaine self-administration by augmenting extinction learning. Neuropsychopharmacology 35:357–367. https://doi.org/10.1038/npp.2009.139

    Article  CAS  PubMed  Google Scholar 

  178. Thanos PK, Bermeo C, Wang G-J, Volkow ND (2011) d-cycloserine facilitates extinction of cocaine self-administration in rats. Synapse 65:938–944. https://doi.org/10.1002/syn.20922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nic Dhonnchadha BÁ, Lin A, Leite-Morris KA et al (2013) Alterations in expression and phosphorylation of GluA1 receptors following cocaine-cue extinction learning. Behav Brain Res 238:119–123. https://doi.org/10.1016/j.bbr.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  180. Ghasemzadeh MB, Vasudevan P, Mueller CR et al (2009) Region-specific alterations in glutamate receptor expression and subcellular distribution following extinction of cocaine self-administration. Brain Res 1267:89–102. https://doi.org/10.1016/j.brainres.2009.01.047

    Article  CAS  PubMed  Google Scholar 

  181. Ghasemzadeh MB, Vasudevan P, Mueller C et al (2009) Neuroadaptations in the cellular and postsynaptic group 1 metabotropic glutamate receptor mGluR5 and Homer proteins following extinction of cocaine self-administration. Neurosci Lett 452:167–171. https://doi.org/10.1016/j.neulet.2008.12.028

    Article  CAS  PubMed  Google Scholar 

  182. Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97:155–167

    Article  Google Scholar 

  183. Mellentin AI, Skøt L, Nielsen B et al (2017) Cue exposure therapy for the treatment of alcohol use disorders: a meta-analytic review. Clin Psychol Rev 57:195–207. https://doi.org/10.1016/j.cpr.2017.07.006

    Article  PubMed  Google Scholar 

  184. Bechard AR, Knackstedt LA (2019) The effects of Pavlovian cue extinction and ceftriaxone on cocaine relapse after abstinence. Drug Alcohol Depend 197:83–86. https://doi.org/10.1016/j.drugalcdep.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Parker LA, Limebeer CL, Slomke J (2006) Renewal effect: context-dependent extinction of a cocaine- and a morphine-induced conditioned floor preference. Psychopharmacology 187:133–137. https://doi.org/10.1007/s00213-006-0422-3

    Article  CAS  PubMed  Google Scholar 

  186. Prisciandaro JJ, Myrick H, Henderson S et al (2013) Impact of DCS-facilitated cue exposure therapy on brain activation to cocaine cues in cocaine dependence. Drug Alcohol Depend 132:195–201. https://doi.org/10.1016/j.drugalcdep.2013.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  187. Santa Ana EJ, Prisciandaro JJ, Saladin ME et al (2015) D-cycloserine combined with cue exposure therapy fails to attenuate subjective and physiological craving in cocaine dependence. Am J Addict 24:217–224. https://doi.org/10.1111/ajad.12191

    Article  PubMed  PubMed Central  Google Scholar 

  188. Das RK, Kamboj SK (2012) Maintaining clinical relevance: considerations for the future of research into d-cycloserine and cue exposure therapy for addiction. Biol Psychiatry 72:e29–e30. https://doi.org/10.1016/j.biopsych.2012.05.030

    Article  PubMed  Google Scholar 

  189. Tunstall BJ, Verendeev A, Kearns DN (2013) Outcome specificity in deepened extinction may limit treatment feasibility: co-presentation of a food cue interferes with extinction of cue-elicited cocaine seeking. Drug Alcohol Depend 133:832–837. https://doi.org/10.1016/j.drugalcdep.2013.08.029

    Article  PubMed  Google Scholar 

  190. Twining RC, Tuscher JJ, Doncheck EM et al (2013) 17-Estradiol is necessary for extinction of cocaine seeking in female rats. Learn Mem 20:300–306. https://doi.org/10.1101/lm.030304.113

    Article  CAS  PubMed  Google Scholar 

  191. Wong WC, Ford KA, Pagels NE et al (2013) Adolescents are more vulnerable to cocaine addiction: behavioural and electrophysiological evidence. J Neurosci 33:4913–4922. https://doi.org/10.1523/JNEUROSCI.1371-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Holtz NA, Carroll ME (2015) Cocaine self-administration punished by intravenous histamine in adolescent and adult rats. Behav Pharmacol 26:393–397. https://doi.org/10.1097/FBP.0000000000000136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Brenhouse HC, Andersen SL (2008) Delayed extinction and stronger reinstatement of cocaine conditioned place preference in adolescent rats, compared to adults. Behav Neurosci 122:460–465. https://doi.org/10.1037/0735-7044.122.2.460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lynch WJ (2008) Acquisition and maintenance of cocaine self-administration in adolescent rats: effects of sex and gonadal hormones. Psychopharmacology 197:237–246. https://doi.org/10.1007/s00213-007-1028-0

    Article  CAS  PubMed  Google Scholar 

  195. Algallal H, Allain F, Ndiaye NA, Samaha AN (2019) Sex differences in cocaine self-administration behaviour under long access versus intermittent access conditions. Addict Biol. https://doi.org/10.1111/adb.12809

    Article  PubMed  Google Scholar 

  196. Zakharova E, Leoni G, Kichko I, Izenwasser S (2009) Differential effects of methamphetamine and cocaine on conditioned place preference and locomotor activity in adult and adolescent male rats. Behav Brain Res 198:45–50. https://doi.org/10.1016/j.bbr.2008.10.019

    Article  CAS  PubMed  Google Scholar 

  197. Zakharova E, Wade D, Izenwasser S (2009) Sensitivity to cocaine conditioned reward depends on sex and age. Pharmacol Biochem Behav 92:131–134. https://doi.org/10.1016/j.pbb.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  198. Bobzean SAM, Dennis TS, Addison BD, Perrotti LI (2010) Influence of sex on reinstatement of cocaine-conditioned place preference. Brain Res Bull 83:331–336. https://doi.org/10.1016/j.brainresbull.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  199. Fuchs RA, Evans KA, Mehta RH et al (2005) Influence of sex and estrous cyclicity on conditioned cue-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacology 179:662–672. https://doi.org/10.1007/s00213-004-2080-7

    Article  CAS  PubMed  Google Scholar 

  200. Zhou L, Pruitt C, Shin CB et al (2014) Fos expression induced by cocaine-conditioned cues in male and female rats. Brain Struct Funct 219:1831–1840. https://doi.org/10.1007/s00429-013-0605-8

    Article  CAS  PubMed  Google Scholar 

  201. Auber A, Tedesco V, Jones CE et al (2013) Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology 226:631–647

    Article  CAS  Google Scholar 

  202. Beckers T, Kindt M (2017) Memory reconsolidation interference as an emerging treatment for emotional disorders: strengths, limitations, challenges, and opportunities. Annu Rev Clin Psychol 13:99–121. https://doi.org/10.1146/annurev-clinpsy-032816-045209

    Article  PubMed  PubMed Central  Google Scholar 

  203. Hutton-Bedbrook K, McNally GP (2013) The promises and pitfalls of retrieval-extinction procedures in preventing relapse to drug seeking. Front Psychiatry 4:14

    Article  Google Scholar 

  204. Sartor GC, Aston-Jones G (2014) Post-retrieval extinction attenuates cocaine memories. Neuropsychopharmacology 39:1059–1065. https://doi.org/10.1038/npp.2013.323

    Article  PubMed  Google Scholar 

  205. Xue YX, Luo YX, Wu P et al (2012) A memory retrieval-extinction procedure to prevent drug craving and relapse. Science (80–) 336:241–245. https://doi.org/10.1126/science.1215070

    Article  CAS  Google Scholar 

  206. Chen YY, Zhang LB, Li Y et al (2019) Post-retrieval extinction prevents reconsolidation of methamphetamine memory traces and subsequent reinstatement of methamphetamine seeking. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2019.00157

    Article  PubMed  PubMed Central  Google Scholar 

  207. Struik RF, De Vries TJ, Peters J (2019) Detrimental effects of a retrieval-extinction procedure on nicotine seeking, but not cocaine seeking. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2019.00243

    Article  PubMed  PubMed Central  Google Scholar 

  208. Goode TD, Holloway-Erickson CM, Maren S (2017) Extinction after fear memory reactivation fails to eliminate renewal in rats. Neurobiol Learn Mem 142:41–47. https://doi.org/10.1016/j.nlm.2017.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  209. Lee JLC, Gardner RJ, Butler VJ, Everitt BJ (2009) D-cycloserine potentiates the reconsolidation of cocaine-associated memories. Learn Mem 16:82–85. https://doi.org/10.1101/lm.1186609

    Article  PubMed  PubMed Central  Google Scholar 

  210. Mittenberg W, Motta S (1993) Effects of chronic cocaine abuse on memory and learning. Arch Clin Neuropsychol 8:477–483

    Article  CAS  Google Scholar 

  211. Gobin C, Shallcross J, Schwendt M (2019) Neurobiological substrates of persistent working memory deficits and cocaine-seeking in the prelimbic cortex of rats with a history of extended access to cocaine self-administration. Neurobiol Learn Mem 161:92–105. https://doi.org/10.1016/j.nlm.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  212. Belin-Rauscent A, Fouyssac M, Bonci A, Belin D (2016) How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol Psychiatry 79:39–46. https://doi.org/10.1016/j.biopsych.2015.01.004

    Article  PubMed  Google Scholar 

  213. Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12:652–669. https://doi.org/10.1038/nrn3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research was supported by National Institute of Health Grants T32NS007433 (BNB) and R01DA042029 (MMT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Torregrossa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, B.N., Torregrossa, M.M. Molecular and circuit mechanisms regulating cocaine memory. Cell. Mol. Life Sci. 77, 3745–3768 (2020). https://doi.org/10.1007/s00018-020-03498-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03498-8

Keywords

Navigation