Skip to main content

Advertisement

Log in

Reciprocal control of ADAM17/EGFR/Akt signaling and miR-145 drives GBM invasiveness

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Glioblastoma multiforme (GBM) is one of the most devastating brain malignancies worldwide and is considered to be incurable. However, the mechanisms underlying its aggressiveness remain unclear.

Methods

The expression of ADAM17 in tissue samples was detected by immunohistochemistry. Knockdown and rescue experiments were used to demonstrate the regulatory effect of ADAM17 on the invasion ability of GBM cells. Western Blot and qPCR were used to detect the expression of related proteins and RNAs. Moreover, a luciferase reporter assay was performed to verify whether miR-145 directly binds to the 3′-UTR of ADAM17.

Results

We revealed that ADAM17 was overexpressed in GBM tissues and correlated positively with poor prognosis. The knockdown of ADAM17 obviously suppressed the invasiveness of GBM cell lines. Furthermore, we found that knockdown of ADAM17 decreased activation of EGFR/Akt/C/EBP-β signaling, and consequently upregulated miR-145 expression in GBM cell lines. Notably, miR-145 directly targeted the ADAM17 3′-UTR and suppressed expression levels of ADAM17.

Conclusions

Our findings define an ADAM17/EGFR/miR-145 feedback loop that drives the GBM invasion. Reciprocal regulation between ADAM17 and miR-145 results in aberrant activation of EGFR signaling, suggesting that inhibition of ADAM17 expression can be an ideal therapeutic strategy for the treatment of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Meir EG, Hadjipanayis CG, Norden AD et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193. https://doi.org/10.3322/caac.20069

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. Lancet 392:432–446. https://doi.org/10.1016/S0140-6736(18)30990-5

    Article  PubMed  Google Scholar 

  3. Paw I, Carpenter RC, Watabe K et al (2015) Mechanisms regulating glioma invasion. Cancer Lett 362:1–7. https://doi.org/10.1016/j.canlet.2015.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herrlich P, Herrlich A (2017) ADAM metalloprotease-released cancer biomarkers. Trends Cancer 3:482–490. https://doi.org/10.1016/j.trecan.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  5. Mullooly M, McGowan PM, Crown J, Duffy MJ (2016) The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther 17:870–880. https://doi.org/10.1080/15384047.2016.1177684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rossello A, Nuti E, Ferrini S, Fabbi M (2016) Targeting ADAM17 sheddase activity in cancer. Curr Drug Targets 17:1908–1927. https://doi.org/10.2174/1389450117666160727143618

    Article  CAS  PubMed  Google Scholar 

  7. Moss ML, Minond D (2017) Recent advances in ADAM17 research: a promising target for cancer and inflammation. Mediators Inflamm 2017:1–21. https://doi.org/10.1155/2017/9673537

    Article  CAS  Google Scholar 

  8. McGowan PM, Ryan BM, Hill ADK et al (2007) ADAM-17 expression in breast cancer correlates with variables of tumor progression. Clin Cancer Res 13:2335–2343. https://doi.org/10.1158/1078-0432.CCR-06-2092

    Article  CAS  PubMed  Google Scholar 

  9. Wu B, Sha L, Wang Y et al (2014) Diagnostic and prognostic value of a disintegrin and metalloproteinase-17 in patients with gliomas. Oncol Lett 8:2616–2620. https://doi.org/10.3892/ol.2014.2582

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aydin D, Bilici A, Yavuzer D et al (2015) Prognostic significance of ADAM17 expression in patients with gastric cancer who underwent curative gastrectomy. Clin Transl Oncol 17:604–611. https://doi.org/10.1007/s12094-015-1283-1

    Article  CAS  PubMed  Google Scholar 

  11. Sun J, Li D-M, Huang J et al (2017) The correlation between the expression of ADAM17, EGFR and Ki-67 in malignant gliomas. Eur Rev Med Pharmacol Sci 21:4595–4599

    CAS  PubMed  Google Scholar 

  12. Bartel DP (2004) MicroRNAs. Cell 116:281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  13. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  14. Luo JW, Wang X, Yang Y, Mao Q (2015) Role of micro-RNA (miRNA) in pathogenesis of glioblastoma. Eur Rev Med Pharmacol Sci 19:1630–1639

    CAS  PubMed  Google Scholar 

  15. Michael MZ, O’Connor SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res (MCR) 1:882–891

    CAS  Google Scholar 

  16. Cho WCS, Chow ASC, Au JSK (2011) MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 8:125–131. https://doi.org/10.4161/rna.8.1.14259

    Article  CAS  PubMed  Google Scholar 

  17. Lei C, Du F, Sun L et al (2017) miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6. Cell Death Dis 8:e3101–e3101. https://doi.org/10.1038/cddis.2017.493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sachdeva M, Mo Y-Y (2010) MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Can Res 70:378–387. https://doi.org/10.1158/0008-5472.CAN-09-2021

    Article  CAS  Google Scholar 

  19. Qiu T, Zhou X, Wang J et al (2014) MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Lett 588:1168–1177. https://doi.org/10.1016/j.febslet.2014.02.054

    Article  CAS  PubMed  Google Scholar 

  20. Cui S-Y, Wang R, Chen L-B (2014) MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways. J Cell Mol Med 18:1913–1926. https://doi.org/10.1111/jcmm.12358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu H, Dougherty U, Robinson V et al (2011) EGFR signals downregulate tumor suppressors miR-143 and miR-145 in western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 9:960–975. https://doi.org/10.1158/1541-7786.MCR-10-0531

    Article  CAS  PubMed  Google Scholar 

  22. Koo S, Martin G, Toussaint LG (2015) MicroRNA-145 promotes the phenotype of human glioblastoma cells selected for invasion. Anticancer Res 35:3209–3215

    CAS  PubMed  Google Scholar 

  23. Kaller M, Hermeking H (2016) Interplay between transcription factors and microRNAs regulating epithelial-mesenchymal transitions in colorectal cancer. Adv Exp Med Biol 937:71–92

    Article  CAS  PubMed  Google Scholar 

  24. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732. https://doi.org/10.1038/nrg.2016.134

    Article  CAS  PubMed  Google Scholar 

  25. Hassemer EL, Endres B, Toonen JA et al (2013) ADAM17 transactivates EGFR signaling during embryonic eyelid closure. Investig Opthalmol Vis Sci 54:132. https://doi.org/10.1167/iovs.12-11130

    Article  CAS  Google Scholar 

  26. Sachdeva M, Liu Q, Cao J et al (2012) Negative regulation of miR-145 by C/EBP-β through the Akt pathway in cancer cells. Nucleic Acids Res 40:6683–6692. https://doi.org/10.1093/nar/gks324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McGowan PM, Mullooly M, Caiazza F et al (2013) ADAM-17: a novel therapeutic target for triple negative breast cancer. Ann Oncol 24:362–369. https://doi.org/10.1093/annonc/mds279

    Article  CAS  PubMed  Google Scholar 

  28. Fang W, Qian J, Wu Q et al (2017) ADAM-17 expression is enhanced by FoxM1 and is a poor prognostic sign in gastric carcinoma. J Surg Res 220:223–233. https://doi.org/10.1016/j.jss.2017.06.032

    Article  CAS  PubMed  Google Scholar 

  29. Baumgart A, Seidl S, Vlachou P et al (2010) ADAM17 regulates epidermal growth factor receptor expression through the activation of notch1 in non-small cell lung cancer. Can Res 70:5368–5378. https://doi.org/10.1158/0008-5472.CAN-09-3763

    Article  CAS  Google Scholar 

  30. Mustafi R, Dougherty U, Mustafi D et al (2017) ADAM17 is a Tumor promoter and therapeutic target in western diet-associated colon cancer. Clin Cancer Res 23:549–561. https://doi.org/10.1158/1078-0432.CCR-15-3140

    Article  CAS  PubMed  Google Scholar 

  31. Chen X, Chen L, Chen J et al (2013) ADAM17 promotes U87 glioblastoma stem cell migration and invasion. Brain Res 1538:151–158. https://doi.org/10.1016/j.brainres.2013.02.025

    Article  CAS  PubMed  Google Scholar 

  32. Chen X, Chen L, Zhang R et al (2013) ADAM17 regulates self-renewal and differentiation of U87 glioblastoma stem cells. Neurosci Lett 537:44–49. https://doi.org/10.1016/j.neulet.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  33. Wolpert F, Tritschler I, Steinle A et al (2014) A disintegrin and metalloproteinases 10 and 17 modulate the immunogenicity of glioblastoma-initiating cells. Neuro-Oncology 16:382–391. https://doi.org/10.1093/neuonc/not232

    Article  CAS  PubMed  Google Scholar 

  34. Zunke F, Rose-John S (2017) The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta (BBA) 1864:2059–2070. https://doi.org/10.1016/j.bbamcr.2017.07.001

    Article  CAS  Google Scholar 

  35. Miller MA, Oudin MJ, Sullivan RJ et al (2016) Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov 6:382–399. https://doi.org/10.1158/2159-8290.CD-15-0933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimoda M, Horiuchi K, Sasaki A et al (2016) Epithelial cell-derived a disintegrin and metalloproteinase-17 confers resistance to colonic inflammation through EGFR activation. EBioMedicine 5:114–124. https://doi.org/10.1016/j.ebiom.2016.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zheng X, Jiang F, Katakowski M et al (2009) ADAM17 promotes breast cancer cell malignant phenotype through EGFR-PI3K-AKT activation. Cancer Biol Ther 8:1045–1054. https://doi.org/10.4161/cbt.8.11.8539

    Article  CAS  PubMed  Google Scholar 

  38. Meng X, Hu B, Hossain MM et al (2016) ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation. Int J Oncol. https://doi.org/10.3892/ijo.2016.3536

    Article  PubMed  Google Scholar 

  39. Berens ME, Rief MD, Shapiro JR et al (1996) Proliferation and motility responses of primary and recurrent gliomas related to changes in epidermal growth factor receptor expression. J Neurooncol 27:11–22. https://doi.org/10.1007/BF00146079

    Article  CAS  PubMed  Google Scholar 

  40. Lund-Johansen M, Bjerkvig R, Humphrey PA et al (1990) Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Can Res 50:6039–6044

    CAS  Google Scholar 

  41. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9:52. https://doi.org/10.3390/cancers9050052

    Article  CAS  PubMed Central  Google Scholar 

  42. Cai M, Wang Z, Zhang J et al (2015) Adam17, a target of Mir-326, promotes emt-induced cells invasion in lung adenocarcinoma. Cell Physiol Biochem 36:1175–1185. https://doi.org/10.1159/000430288

    Article  CAS  PubMed  Google Scholar 

  43. Su Y, Wang Y, Zhou H et al (2014) MicroRNA-152 targets ADAM17 to suppress NSCLC progression. FEBS Lett 588:1983–1988. https://doi.org/10.1016/j.febslet.2014.04.022

    Article  CAS  PubMed  Google Scholar 

  44. Lu Y, Chopp M, Zheng X et al (2013) MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells. Oncol Rep 29:67–72. https://doi.org/10.3892/or.2012.2084

    Article  CAS  PubMed  Google Scholar 

  45. Wu J, Yin L, Jiang N et al (2015) MiR-145, a microRNA targeting ADAM17, inhibits the invasion and migration of nasopharyngeal carcinoma cells. Exp Cell Res 338:232–238. https://doi.org/10.1016/j.yexcr.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  46. Lan T, Wang H, Zhang Z et al (2017) Downregulation of β-arrestin 1 suppresses glioblastoma cell malignant progression vis inhibition of Src signaling. Exp Cell Res 357:51–58. https://doi.org/10.1016/j.yexcr.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Lan T, Zhang W et al (2015) Platelet-activating factor receptor-mediated PI3K/AKT activation contributes to the malignant development of esophageal squamous cell carcinoma. Oncogene 34:5114–5127. https://doi.org/10.1038/onc.2014.434

    Article  CAS  PubMed  Google Scholar 

  48. Doberstein K, Steinmeyer N, Hartmetz AK et al (2013) MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia (United States). https://doi.org/10.1593/neo.121222

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (No. KZ201510025030).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Yuduo Guo, Xin He, Junfa Li, Chunjiang Yu, Hongwei Zhang. Development of methodology: Yuduo Guo, Xin He, Junfa Li, Chunjiang Yu, Hongwei Zhang. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): Yuduo Guo, Xin He, Junfa Li, Chunjiang Yu, Hongwei Zhang. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Yuduo Guo, Xin He, Junfa Li, Chunjiang Yu, Hongwei Zhang. Writing, review, and/or revision of the manuscript: Yuduo Guo, Junfa Li, Chunjiang Yu, Hongwei Zhang. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): Yuduo Guo, Xin He, Mingshan Zhang, Yanming Qu, Chunyu Gu, Ming Ren, Haoran Wang, Weihai Ning Study supervision: Junfa Li, Chunjiang Yu, Hongwei Zhang.

Corresponding author

Correspondence to Hongwei Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 411 kb)

Supplementary file2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., He, X., Zhang, M. et al. Reciprocal control of ADAM17/EGFR/Akt signaling and miR-145 drives GBM invasiveness. J Neurooncol 147, 327–337 (2020). https://doi.org/10.1007/s11060-020-03453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03453-4

Navigation