Skip to main content
Log in

Performance Analysis of Super Twisting Sliding Mode Controller by ADAMS–MATLAB Co-simulation in Lower Extremity Exoskeleton

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Lower extremity exoskeleton is a kind of wearable robot and is used both in medical and industrial applications for different purposes. In the medical field it is used as a piece of therapeutic equipment and in the industry especially in defense, to carry heavy loads. This paper deals with the analysis of the performance of super twisting sliding mode controller (STSMC) on tracking the motion of the wearer by the lower extremity exoskeleton using automatic dynamic analysis of mechanical systems (ADAMS)–MATLAB co-simulation during walking and step climbing and the results are compared with a conventional PID controller. The model of the lower extremity exoskeleton is developed by solid-works software and the model of the human body is done with ADAMS software. Super twisting sliding mode controller (STSMC) is designed and simulated with Simulink. This paper also aims to develop a mathematical model of the system and analyze the performance of STSMC to control hip, knee, and ankle movements and also to point out the advantages of the ADAMS–MATLAB co-simulation over the conventional methods of modeling and simulation analysis of the controller to control the exoskeleton. Stability analysis of the controller is also done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Robinson, D. (2000). Design and analysis of series elasticity in closed-loop actuator force control. Ph.D. thesis, MIT.

  2. Long, Y., Du, Z., Chen, C., Wang, W., He, L., Mao, X., et al. (2018). Hybrid control scheme of a hydraulically actuated lower extremity Exoskeleton for Load-Carrying. J Intell Robot Syst, 91, 493–500.

    Article  Google Scholar 

  3. Ghan, J., Steger, R., & Kazerooni, H. (2006). Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX). Advanced Robotics,20(9), 989–1014.

    Article  Google Scholar 

  4. L. Huang, J. R. Steger, H. Kazerooni. (2005). Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). in Proceedings of IMECE 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005-80109, November 5–11, 2005.

  5. Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity Exoskeleton (BLEEX). IEEE/ASME Transactions On Mechatronics, 11(2), 1083–4435.

    Article  Google Scholar 

  6. Mefoued, S., Mohammed, S., & Amirat, Y. (2011). Knee joint movement assistance through robust control of an actuated orthosis. IEEE/RSJ International Conference on Intelligent Robots and System,11(5), 1749–1754.

    Google Scholar 

  7. Mefoued, S., Mohammed, S., & Amirat, Y. (2012). Sit-to-stand movement assistance using an actuated knee joint orthosis. The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Roma, Italy,12(5), 1753–1758.

    Google Scholar 

  8. Mefoued, S., Mohammed, S., & Amirat, Y. (2013). Toward movement restoration of knee joint using robust control of powered orthosis. IEEE Transactions on Control Systems Technology,21(6), 1753–1758.

    Article  Google Scholar 

  9. D. Chen, M. Ning, B. Zhanga. (2014). Control strategy of the lower-limb exoskeleton based on the EMG signals. in Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics, December 5–10, 2014, Bali, Indonesia.

  10. Qigong, W., Wang, X., Fengpo, D., & Zhang, X. (2015). Design and control of a powered hip exoskeleton for walking assistance. International Journal of Advanced Robotic Systems,12, 18. https://doi.org/10.5772/59757.

    Article  Google Scholar 

  11. Luengas, Y. R., Lopez-Gutierrez, R., Salazar, S., & Lozano, R. (2018). Robust controls for upper limb exoskeleton, real-time results. Proc IMechE Part I: J Systems and Control Engineering,232(7), 797–806.

    Article  Google Scholar 

  12. Chen, C., Zhang, S., Zhu, X., Shen, J., & Xu, Z. (2020). Disturbance observer-based patient-cooperative control of a lower extremity rehabilitation exoskeleton. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00312-9.

    Article  Google Scholar 

  13. Walsh, C.J. (2003). Biomimetic design of an underactuated leg exoskeleton for load-carrying augmentation. Thesis report. Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology (MIT)

  14. Hyun, D. J., Lim, H., Park, S., & Jung, K. (2017). Development of ankle-less active lower-limb exoskeleton controlled using finite leg function state machine. International Journal of Precision Engineering and Manufacturing,18(6), 803–811.

    Article  Google Scholar 

  15. Mefoued, S. (2014). A second-order sliding-mode control and a neural network to drive a knee joint actuated orthosis. Elsevier B. V.,155(0925–2312), 71–79.

    Google Scholar 

  16. Madani, T., Daichi, B., & Djouani, K. (2015). Non-singular terminal sliding mode controller: Application to an actuated exoskeleton. Elsevier B. V.,33(0957–4158), 135–136.

    Google Scholar 

  17. Choo, J., & Park, J. H. (2017). Increasing payload capacity of wearable robots employing linear actuators and elastic mechanism. International Journal of Precision Engineering and Manufacturing,18(5), 661–671.

    Article  Google Scholar 

  18. Huang, G., Zhang, W., Meng, F., Zhangguo, Y., Chen, X., Ceccarelli, M., et al. (2018). Master–slave control of an intention-actuated exoskeletal robot for locomotion and lower extremity rehabilitation. International Journal of Precision Engineering and Manufacturing,19(7), 983–991.

    Article  Google Scholar 

  19. B. Brahmi, M. Saad, C. Ochoa-Luna, S. Di Gennero, M. H. Rahman. (2018). A new integral second-order terminal sliding mode control with time delay estimation for an exoskeleton robot with dynamics uncertainties. in Proceedings of the 5th International Conference of Control, Dynamic Systems, and Robotics (CDSR’18), vol. 113, pp. 1–10.

  20. Bkekri, R., Benamor, A., Alouane, M. A., Fried, G., & Messaoud, H. (2018). Robust adaptive sliding mode control for a human-driven knee joint orthosis. Industrial Robot: An International Journal,232(7), 797–806.

    Google Scholar 

  21. Yun, D., Khan, A. M., Yan, R.-J., Ji, Y., Jang, H., Iqbal, J., et al. (2016). Handling subject arm uncertainties for upper limb rehabilitation robot using robust sliding mode control. International Journal of Precision Engineering and Manufacturing,17(3), 355–362.

    Article  Google Scholar 

  22. Rahmani, M., & Rahman, M. H. (2018). Novel robust control of a 7-DOF exoskeleton robot. PLOS One, 13(9), e0203440.

    Article  Google Scholar 

  23. Zhang, T., Tran, M., & Huang, H. (2018). Design and experimental verification of HipExoskeleton with balance capacities for walking assistance. IEEE/ASME Transactions On Mechatronics, 23(1), 274–285.

    Article  Google Scholar 

  24. Low, K. H., Liu, X., Goh, C. H., & Yu, H. (2006). Locomotive control of a wearable lower exoskeleton for walking enhancement. Journal of Vibration and Control,12(12), 1311–1336. https://doi.org/10.1177/1077546306070616.

    Article  MATH  Google Scholar 

  25. Wu, H., Jia, T., Li, N., Wu, J., & Yan, L. (2017). Study on the control algorithm for lower-limb exoskeleton based on ADAMS Simulink cosimulation. Journal of Vibro-engineering, 19(4), 2976–2986.

    Article  Google Scholar 

  26. Din, S. U., Khan, Q., Rehman, F.-U., & Akmeliawanti, R. (2017). A comparative experimental study of robust sliding mode control strategies for under actuated systems. IEEE Translations,5, 2169–3536.

    Google Scholar 

  27. Frdman, L., & Levant, A. (2002). Higher order sliding modes. In W. Perruquetti & J. J. Barbot (Eds.), Sliding Mode Control in Engineering (pp. 53–101). New York: Marcel Dekker.

    Google Scholar 

  28. Bartolini, G., Pisano, E., & Usai, E. (2003). A survey of application of second order sliding mode control to mechanical systems. International Journal of Control,76, 875–892.

    Article  MathSciNet  Google Scholar 

  29. Zakeri, E., Moezi, S. A., & Eghtesad, M. (2019). Optimal interval type-2 fuzzy fractional order super twisting algorithm: a second order sliding mode controller for fully-actuated and under-actuated nonlinear systems. ISA Transactions,1(85), 13–32.

    Article  Google Scholar 

  30. M. W. Spong, S. Hutchinson, M. Vidyasagar. (2004). Robot dynamics and control, 2nd edn. Springer.

  31. J. A. Moreno, M. Osorio. (2008). A lyapunov approach to second-order sliding mode controllers and observers. in Proceedings of 47 th IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico, December 9–11, 2008.

  32. J. A. Moreno. (2009). A linear frame work for the robust stability of a generalized super-twisting algorithm. in Proceedings of Sixth IEEE Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2009), Toluca, Mexico, November 10–13, 2009.

  33. A. Davila, J. A. Moreno, L. Fridman. (2009). Optimal Lyapunov function selection for reaching time estimation of super twisting algorithm. in Proceedings of 48thIEEE Conference on Decision and Control (CDC2009), Shanghai, PRChina, December 16–18, 2009.

  34. A. Davila, J. A. Moreno, L. Fridman. (2010). Global non homogenous super-twisting controller for the quasi-linear systems with unbounded uncertainties: A Lyapunov design. in Proceedings of the American Control Conference (ACC2010), Baltimore, MD, USA, June 30–July 2, 2010.

  35. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. (2012). Linear matrix inequalities in system and control theory. Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994. L. Derafa etal./Journal of the Frank lin Institute 349 (2012) 685–699 699

  36. Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken: Wiley.

    Book  Google Scholar 

  37. Yali, H., Aiquo, S., Haitao, G., & Songqing, Z. (2015). The muscle activation patterns of the lower limb during stair climbing at different backpack load. Acta of Bioengineering and Biomechanics. https://doi.org/10.5277/abb-00155-2014-06.

    Article  Google Scholar 

  38. Y. Long, Z.-J. Du, C.-F. Chen, W. Wang, L. He, X. Mao, G.-Q. Xu, G. Zhao, W. Dong. (2016). Design kinematics and dynamics modeling of a lower limb walking assistant robot. in Proceedings of the 4th International Conference on Robotics and Mechatronics, October 26–28, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali S. Nair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.S., Ezhilarasi, D. Performance Analysis of Super Twisting Sliding Mode Controller by ADAMS–MATLAB Co-simulation in Lower Extremity Exoskeleton. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 743–754 (2020). https://doi.org/10.1007/s40684-020-00202-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00202-w

Keywords

Navigation