Skip to main content
Log in

Positive solutions and pattern formation in a diffusive tritrophic system with Crowley–Martin functional response

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present work, we have studied a diffusive tritrophic food chain model in which the species at each trophic level interact in accordance with Crowley–Martin functional response under mixed boundary conditions. Using degree theory and fixed point index-based methods, we have proved the existence of the positive solutions of the proposed system. We have proved the permanence of the positive solutions and existence of global attractor. The conditions for diffusion-driven instability have been obtained analytically. Moreover, the pattern formation due to diffusion-driven instability has been investigated numerically. We have shown the existence of the positive solutions both analytically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  2. Iron, D., Ward, M.J., Wei, J.: The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Physica D 150(1–2), 25–62 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Davidson, F.A., Rynne, B.P.: A priori bounds and global existence of solutions of the steady-state Sel’kov model. Proc. R. Soc. Edinb. Sect. A Math. 130(3), 507–516 (2000)

    MATH  Google Scholar 

  4. Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72(1), 1–27 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Zhou, J., Chunlai, M.: Pattern formation of a coupled two-cell Brusselator model. J. Math. Anal. Appl. 366(2), 679–693 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Kondo, S.: The reaction–diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes Cells 7(6), 535–541 (2002)

    Google Scholar 

  7. Kondo, S., Miura, T.: Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Dubey, B., Kumari, N., Upadhyay, R.K.: Spatiotemporal pattern formation in a diffusive predator–prey system: an analytical approach. J. Appl. Math. Comput. 31(1–2), 413–432 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Kumari, N.: Pattern formation in spatially extended tritrophic food chain model systems: generalist versus specialist top predator. ISRN Biomath. 2013, 198185 (2013)

    MATH  Google Scholar 

  10. Tang, X., Song, Y., Zhang, T.: Turing-Hopf bifurcation analysis of a predator–prey model with herd behavior and cross-diffusion. Nonlinear Dyn. 86(1), 73–89 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85(1), 1–12 (2016)

    MathSciNet  Google Scholar 

  12. Sun, G.-Q., et al.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83(1–2), 811–819 (2016)

    MathSciNet  Google Scholar 

  13. Sun, G.-Q., et al.: Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43–73 (2016)

    Google Scholar 

  14. Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 77(1–2), 31–40 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Skalski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001)

    Google Scholar 

  16. Cantrell, R.S., Cosner, C.: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257(1), 206–222 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8(3), 211–221 (1989)

    Google Scholar 

  18. Upadhyay, R.K., Naji, R.K.: Dynamics of a three species food chain model with Crowley–Martin type functional response. Chaos Solitons Fract. 42(3), 1337–1346 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Dong, Y., et al.: Qualitative analysis of a predator–prey model with Crowley–Martin functional response. Int. J. Bifurcat. Chaos 25(09), 1550110 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Tiwari, V., Tripathi, J.P., Abbas, S., Wang, J.-S., Sun, G.-Q., Jin, Z.: Qualitative analysis of a diffusive Crowley–Martin predator–prey model: the role of nonlinear predator harvesting. Nonlinear Dyn. 98(2), 1169–1189 (2019)

    Google Scholar 

  21. Dancer, E.N.: On the indices of fixed points of mappings in cones and applications. J. Math. Anal. Appl. 91(1), 131–151 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Dancer, E.N., Yihong, D.: Positive solutions for a three-species competition system with diffusion—I. General existence results. Nonlinear Anal. Theory Methods Appl. 24(3), 337–357 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Dancer, E.N.: On positive solutions of some pairs of differential equations. Trans. Am. Math. Soc. 284(2), 729–743 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Dancer, E.N.: On positive solutions of some pairs of differential equations. II. J. Differ. Equ. 60(2), 236–258 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Zhou, J., Chunlai, M.: Positive solutions for a three-trophic food chain model with diffusion and Beddington–Deangelis functional response. Nonlinear Anal. Real World Appl. 12(2), 902–917 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Yamada, Y.: Positive solutions for Lotka–Volterra systems with cross-diffusion. In: Chipot, M. (ed.) Handbook of differential equations: stationary partial differential equations, vol. 6, pp. 411–501. Elsevier, North-Holland (2008)

    Google Scholar 

  27. Li, L.: Coexistence theorems of steady states for predator–prey interacting systems. Trans. Am. Math. Soc. 305(1), 143–166 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Cano-Casanova, S.: Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems. Nonlinear Anal. Theory Methods Appl. 49(3), 361–430 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Cano-Casanova, S., López-Gómez, J.: Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems. J. Differ. Equ. 178(1), 123–211 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Pao, C.V.: Quasisolutions and global attractor of reaction–diffusion systems. Nonlinear Anal. Theory Methods Appl. 26(12), 1889–1903 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Chen, S.-J., et al.: Abundant exact solutions and interaction phenomena of the (2+ 1)-dimensional YTSF equation. Anal. Math. Phys. 9(4), 2329–2344 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Xu, H.-N., Ruan, W.-Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo–Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Hua, Y.-F., et al.: Interaction behavior associated with a generalized (2+ 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    MathSciNet  Google Scholar 

  34. Lü, X., Ma, W.-X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85(2), 1217–1222 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Yin, Y.-H., et al.: Diversity of exact solutions to a (3+ 1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76(6), 1275–1283 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Gao, L.-N., et al.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89(3), 2233–2240 (2017)

    Google Scholar 

  37. Gao, L.-N., et al.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72(5), 1225–1229 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Lü, X., Lin, F., Qi, F.: Analytical study on a two-dimensional Korteweg–de Vries model with bilinear representation, Bäcklund transformation and soliton solutions. Appl. Math. Model. 39(12), 3221–3226 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Shi, H.-B., Ruan, S.: Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference. IMA J. Appl. Math. 80(5), 1534–1568 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245(2), 220–229 (2007)

    MathSciNet  Google Scholar 

  41. Alonso, D., Bartumeus, F., Catalan, J.: Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83(1), 28–34 (2002)

    Google Scholar 

  42. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  43. Deimling, K.: Nonlinear Functional Analysis. Courier Corporation, North Chelmsford (2010)

    MATH  Google Scholar 

  44. Krasnoselskii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff, Groningen (1964). English translation of Russian original

    Google Scholar 

  45. Pao, C.-V.: Nonlinear Parabolic and Elliptic Equations. Springer, Cham (2012)

    Google Scholar 

  46. Kumari, N., Mohan, N.: Cross diffusion induced turing patterns in a tritrophic food chain model with Crowley–Martin functional response. Mathematics 7(3), 229 (2019)

    Google Scholar 

  47. Cao, X., Jiang, W.: Turing–Hopf bifurcation and spatiotemporal patterns in a diffusive predator–prey system with Crowley–Martin functional response. Nonlinear Anal. Real World Appl. 43, 428–450 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Jia, Y.: Computational analysis on Hopf bifurcation and stability for a consumer-resource model with nonlinear functional response. Nonlinear Dyn. 94(1), 185–195 (2018)

    MATH  Google Scholar 

  49. Upadhyay, R.K., Pal, A.K., Kumari, S., Roy, P.: Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates. Nonlinear Dyn. 96(4), 2351–2368 (2019)

    Google Scholar 

  50. Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey–predator systems. Nonlinear Dyn. 67(4), 2543–2548 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Hu, G., Li, X., Wang, Y.: Pattern formation and spatiotemporal chaos in a reaction–diffusion predator–prey system. Nonlinear Dyn. 81(1–2), 265–275 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and the anonymous reviewers whose comments and suggestions have immensely helped us to improve the quality of the paper. The first author (NK) is also thankful to Science Engineering Research Board (SERB), India, for providing financial support under two separate grants with Grant Numbers MTR/2018/000727 and EMR/2017/005203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitu Kumari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Mohan, N. Positive solutions and pattern formation in a diffusive tritrophic system with Crowley–Martin functional response. Nonlinear Dyn 100, 763–784 (2020). https://doi.org/10.1007/s11071-020-05534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05534-5

Keywords

Navigation