Skip to main content
Log in

Influence of bit design on the stability of a rotary drilling system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper extends the RGD model originally proposed by Richard et al. (J Sound Vib 305(3):432–456, 2007, https://doi.org/10.1016/j.jsv.2007.04.015) to investigate drilling-induced vibrations, by considering idealized drag bits characterized either by multiple angular offsets between the blades or by a combination of full and partial blades, a departure from the symmetric bit of the RGD model consisting of multiple continuous blades. The RGD model is built on a two-degrees of freedom discrete representation of the drillstring combined with a rate-independent bit/rock interaction law. By relaxing the original constraints on the bit geometry, the coupled state-dependent delay differential equations governing the angular and axial motions of the bit now contain multiple state-dependent time delays. A linear stability analysis leads to explicit expressions for the critical rotational speed(s) defining two different regimes of stability of the coupled dynamics. Stability maps indicate that both groups of bits have a better axial stability than their RGD counterparts. It is also found that multiple critical rotation speeds exist for certain bit geometries, in contrast to the single axial stability boundary of the original RGD model. Time simulations confirm the predictions of the linear stability analysis and show evidence of the existence of different types of quasi-periodic responses before the establishment of a limit cycle characterized by both axial and torsional stick-slip events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aarsnes, U.J.F., Aamo, O.M.: Linear stability analysis of self-excited vibrations in drilling using an infinite dimensional model. J. Sound Vib. 360, 239–259 (2016). https://doi.org/10.1016/j.jsv.2015.09.017

    Article  Google Scholar 

  2. Aarsnes, U.J.F., de Wouw, N.: Dynamics of a distributed drill string system: characteristic parameters and stability maps. J. Sound Vib. 417, 376–412 (2018). https://doi.org/10.1016/j.jsv.2017.12.002

    Article  Google Scholar 

  3. Behr, S.M., Warren, T.M., Sinor, L.A., Brett, J.F.: Three-dimensional modeling of PDC bits. In: SPE/IADC Drilling Conference. SPE/IADC 21928, pp. 273–281. Society of Petroleum Engineers, Amsterdam, Netherlands (1991)

  4. Besselink, B., van de Wouw, N., Nijmeijer, H.: A semi-analytical study of stick-slip oscillations in drilling systems. J. Comput. Nonlinear Dyn. 6(2), 0201006–1 (2011). https://doi.org/10.1115/1.4002386

  5. Besselink, B., Vromen, T., Kremers, N., van de Wouw, N.: Analysis and control of stick-slip oscillations in drilling systems. IEEE Trans. Control Syst. Technol. 24(5), 1582–1593 (2016). https://doi.org/10.1109/TCST.2015.2502898

  6. Bhatt, S.J., Hsu, C.S.: Stability criteria for second-order dynamical systems with time lag. ASME J. Appl. Mech. 33(1), 113–118 (1966)

    Article  MathSciNet  Google Scholar 

  7. Brett, J.F.: The genesis of torsional drillstring vibrations. SPE Drill. Eng. 7(3), 168–174 (1992). https://doi.org/10.2118/21943-PA

    Article  Google Scholar 

  8. Challamel, N.: Etude de stabilite d’une structure de forage a partir du processus de destruction de la roche. Ph.D. Thesis, Ecole des Mines de Paris, Paris, France (1999)

  9. Dareing, D., Tlusty, J., Zamudio, C.: Self-excited vibrations induced by drag bits. ASME J. Energy Resour. Technol. 112(1), 54–61 (1990). https://doi.org/10.1115/1.2905713

    Article  Google Scholar 

  10. Depouhon, A., Detournay, E.: Instability regimes and self-excited vibrations in deep drilling systems. J. Sound Vib. 333(7), 2019–2039 (2014). https://doi.org/10.1016/j.jsv.2013.10.005

    Article  Google Scholar 

  11. Detournay, E., Defourny, P.: A phenomenological model for the drilling action of drag bits. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 29(1), 13–23 (1992). https://doi.org/10.1016/0148-9062(92)91041-3

    Article  Google Scholar 

  12. Detournay, E., Richard, T., Shepherd, M.: Drilling response of drag bits: theory and experiment. Int. J. Rock Mech. Min. Sci. 45(8), 1347–1360 (2008). https://doi.org/10.1016/j.ijrmms.2008.01.010

    Article  Google Scholar 

  13. Dunayevsky, V.A., Abbassian, F.: Application of stability approach to bit dynamics. In: SPE Annual Technical Conference and Exhibition, SPE 30478, pp. 1–15. Society of Petroleum Engineers, Dallas, Texas, USA (1995)

  14. Elsayed, M.A., Wells, R.L., Dareing, D.W., Nagirimadugu, K.: Effect of process damping on longitudinal vibrations in drillstrings. ASME J. Energy Resour. Technol. 116(2), 129–135 (1994). https://doi.org/10.1115/1.2906017

    Article  Google Scholar 

  15. Elsayed, M.A., Dareing, D.W., Vonderheide, M.A.: Effect of torsion on stability, dynamic forces, and vibration characteristics in drillstrings. ASME J. Energy Resour. Technol. 119(1), 11–19 (1997). https://doi.org/10.1115/1.2794215

    Article  Google Scholar 

  16. Elsayed, M.A., Dareing, D.W., Vonderheide, M.A.: Effect of torsion on stability, dynamic forces, and vibration characteristics in drillstrings. J. Energy Res. Technol. 119(3), 11–19 (1997)

    Article  Google Scholar 

  17. Faassen, R.P.H., van de Wouw, N., Oosterling, J.A.J., Nijmeijer, H.: Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int. J. Mach. Tools Manuf 43(14), 1437–1446 (2003). https://doi.org/10.1016/S0890-6955(03)00171-8

    Article  Google Scholar 

  18. Franca, L.F.P.: Drilling action of roller-cone bits: Modeling and experimental validation. ASME J. Energy Resour. Technol. 132(4), 043101–1 (2010). https://doi.org/10.1115/1.4003168

  19. Germay, C., Denoel, V., Detournay, E.: Multiple mode analysis of the self-excited vibrations of rotary drilling systems. J. Sound Vib. 325, 362–381 (2009). https://doi.org/10.1016/j.jsv.2009.03.017

    Article  Google Scholar 

  20. Germay, C., van de Wouw, N., Nijmeijer, H., Sepulchre, R.: Nonlinear drillstring dynamics analysis. SIAM J Appl. Dyn. Syst. 8, 527–553 (2009). https://doi.org/10.1137/060675848

    Article  MathSciNet  MATH  Google Scholar 

  21. Gupta, S.K., Wahi, P.: Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling. J. Sound Vib. 412, (2018). https://doi.org/10.1016/j.jsv.2017.08.044

  22. Gupta, S.K., Wahi, P.: Global axial-torsional dynamics during rotary drilling. J. Sound Vib. 375, 332–352 (2016). https://doi.org/10.1016/j.jsv.2016.04.021

    Article  Google Scholar 

  23. Hale, J.K.: Theory of Functional Differential Equations. Applied Mathematical Sciences. Springer, New York (1977)

    Book  Google Scholar 

  24. Hartung, F., Turi, J.: Linearized stability in functional differential equations with state-dependent delays. In: International Conference on Dynamical Systems and Differential Equations. Atlanta, USA (2000)

  25. Hsu, C.S., Bhatt, S.J.: Stability charts for second-order dynamical systems with time lag. ASME J. Appl. Mech. 33(1), 119–124 (1966)

    Article  Google Scholar 

  26. Insperger, T., Stepan, G., Turi, J.: State-dependent delay model for regenerative cutting processes. In: Proceedings of Fifth EUROMECH Nonlinear Dynamics Conference, ENOC 2005, pp. 1124–1129. Eindhoven, Netherlands (2005)

  27. Insperger, T., Stepan, G.: Semi-Discretization for Time-Delay Systems, Applied Mathematical Sciences, 1st edn. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0335-7

    Book  MATH  Google Scholar 

  28. Insperger, T., Stépán, G., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47(1), 275–283 (2007). https://doi.org/10.1007/s11071-006-9068-2

    Article  MATH  Google Scholar 

  29. Langeveld, C.J.: PDC bit dynamics. In: SPE/IADC Drilling Conference, SPE 23867, pp. 227–241. Society of Petroleum Engineers, New Orleans, Louisiana, USA (1992). https://doi.org/10.2118/23867-MS

  30. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: State-dependent delay influenced drill-string oscillations and stability analysis. J. Vib. Acoust. 136(5) (2014). https://doi.org/10.1115/1.4027958

  31. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Nonlinear motions of a flexible rotor with a drill bit: stick-slip and delay effects. Nonlinear Dyn. 72(1–2), 61–77 (2013). https://doi.org/10.1007/s11071-012-0690-x

    Article  MathSciNet  Google Scholar 

  32. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Coupled axial-torsional dynamics in rotary drilling with state-dependent delay: stability and control. Nonlinear Dyn. 78, 1891–1906 (2014). https://doi.org/10.1007/s11071-014-1567-y

    Article  Google Scholar 

  33. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Multiple regenerative effects in cutting process and nonlinear oscillations. Int. J. Dyn. Control 2(1), 86–101 (2014). https://doi.org/10.1007/s40435-014-0078-5

    Article  Google Scholar 

  34. Michiels, W., Niculescu, S.I.: Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Society for Industrial and Applied Mathematics (2007)

  35. Nandakumar, K., Wiercigroch, M.: Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration. J. Sound Vib. 332, 2575–2592 (2013). https://doi.org/10.1016/j.jsv.2012.12.020

    Article  Google Scholar 

  36. Nishimatsu, Y.: The mechanics of rock cutting. Int. J. Rock Mech. Min. Sci. 9(2), 261–270 (1972). https://doi.org/10.1016/0148-9062(72)90027-7

    Article  Google Scholar 

  37. Palmov, V.A., Brommundt, E., Belyaev, A.K.: Stability analysis of drillstring rotation. Dyn. Stabil. Syst. 10(2), 99–110 (1995). https://doi.org/10.1080/02681119508806197

    Article  MathSciNet  MATH  Google Scholar 

  38. Pavone, D.R., Desplans, J.P.: Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling. In: SPE Annual Technical Conference and Exhibition, SPE 28324, pp. 335–345. Society of Petroleum Engineers, New Orleans, Louisiana, USA (1994). https://doi.org/10.2118/28324-MS

  39. Richard, T.: Self-excited stick-slip oscillations of drag bits. Ph.D. Thesis, Faculty of the Graduate School of the University of Minnesota, Minneapolis, Minnesota, USA (2001)

  40. Richard, T., Germay, C., Detournay, E.: Self-excited stick-slip oscillations of drill bits. C.R. Mec. 332(8), 619–626 (2004). https://doi.org/10.1016/j.crme.2004.01.016

    Article  MATH  Google Scholar 

  41. Richard, T., Germay, C., Detournay, E.: A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits. J. Sound Vib. 305(3), 432–456 (2007). https://doi.org/10.1016/j.jsv.2007.04.015

    Article  Google Scholar 

  42. Stepan, G.: Delay-differential equation models for machine tool chatter. In: Moon, F.C. (ed.) Dynamics and Chaos in Manufacturing Processes, pp. 165–191. Wiley, London (1998). chap. 6

    Google Scholar 

  43. Tlusty, J., Polacek, M.: The stability of machine tool against self-excited-vibrations in machining. In: Proceedings of the International Production Engineering Research Conference, pp. 454–465. American Society of Mechanical Engineers, Pittsburgh, Pennsylvania, USA (1963)

  44. Wiercigroch, M., Nandakumar, K., Pei, L., Kapitaniak, M., Vaziri, V.: State dependent delayed drill-string vibration: theory, experiments and new model. Procedia IUTAM 33, 39–59 (2017). https://doi.org/10.1016/j.piutam.2017.08.007

    Article  Google Scholar 

  45. Yan, Y., Wiercigroch, M.: Dynamics of rotary drilling with non-uniformly distributed blades. Int. J. Mech. Sci. 160, 270–281 (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.016

    Article  Google Scholar 

  46. Zheng, X., Balachandran, B.: State-dependent delay and drill-string dynamics. Procedia IUTAM 22, 31–38 (2017). https://doi.org/10.1016/j.piutam.2017.08.006

    Article  Google Scholar 

  47. Zhou, Y., Detournay, E.: Analysis of the contact forces on a blunt PDC bit. In: 48th US Rock Mechanics/Geomechanics Symposium, ARMA 14-7351 (2014)

Download references

Acknowledgements

This study was funded by Halliburton (Grant Number CON000000050233)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Detournay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, K., Ganesh, R. & Detournay, E. Influence of bit design on the stability of a rotary drilling system. Nonlinear Dyn 100, 51–75 (2020). https://doi.org/10.1007/s11071-020-05537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05537-2

Keywords

Navigation