Skip to main content
Log in

Recursive Analytical Formulae of Gravitational Fields and Gradient Tensors for Polyhedral Bodies with Polynomial Density Contrasts of Arbitrary Non-negative Integer Orders

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Exact computation of the gravitational field and gravitational gradient tensor for a general mass body is a core routine to model the density structure of the Earth. In this study, we report on the existence of closed-form solutions of the gravitational potential, gravitational field and gravitational gradient tensor for a general polyhedral mass body with a polynomial density function of arbitrary non-negative integer orders that can simultaneously vary in both horizontal and vertical directions. Our closed-form solutions of the gravitational potential and the gravitational field are singularity-free, which implies that the observation sites can have arbitrary geometric relationships with polyhedral mass source bodies. However, weak logarithmic singularities exist on the edges of polyhedra for the gravitational gradient tensor. A simple prismatic mass body with polynomial density contrast varying in the vertical direction and a complicated dodecahedral mass body with quartic-order density contrasts were tested to verify the accuracy of the newly derived closed-form solutions. For the gravitational potential, gravitational fields and gradient tensors, our closed-form solutions are in excellent agreement with previously published analytical solutions and Gaussian numerical quadrature solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aydemir A, Ates A, Bilim F, Buyuksarac A, Bektas O (2014) Evaluation of gravity and aeromagnetic anomalies for the deep structure and possibility of hydrocarbon potential of the region surrounding Lake Van, Eastern Anatolia, Turkey. Surv Geophys 35(2):431–448

    Article  Google Scholar 

  • Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24-es

    Article  Google Scholar 

  • Barnett CT (1976) Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three dimensional body. Geophysics 41(6):1353–1364

    Article  Google Scholar 

  • Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Bruinsma SL, Foerste C, Abrikosov O, Lemoine JM, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514

    Article  Google Scholar 

  • Chen L, Liu L (2019) Fast and accurate forward modelling of gravity field using prismatic grids. Geophys J Int 216(2):1062–1071

    Article  Google Scholar 

  • Chen CJ, Ren Z, Pan K, Tang J, Kalscheuer T, Maurer H, Sun Y, Li Y (2018) Exact solutions of the vertical gravitational anomaly for a polyhedral prism with vertical polynomial density contrast of arbitrary orders. Geophys J Int 214(3):2115–2132

    Article  Google Scholar 

  • Chen C, Chen Y, Bian S (2019a) Evaluation of the spherical harmonic coefficients for the external potential of a polyhedral body with linearly varying density. Celest Mech Dyn Astron 131(2):8

    Article  Google Scholar 

  • Chen C, Ouyang Y, Bian S (2019b) Spherical harmonic expansions for the gravitational field of a polyhedral body with polynomial density contrast. Surv Geophys 40(2):197–246

    Article  Google Scholar 

  • Conway JT (2015) Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest Mech Dyn Astron 121(1):17–38

    Article  Google Scholar 

  • Dai S, Zhao D, Wang S, Xiong B, Zhang Q, Li K, Chen L, Chen Q (2019) Three-dimensional numerical modeling of gravity and magnetic anomaly in a mixed space-wavenumber domain. Geophysics 84(4):G41–G54

    Article  Google Scholar 

  • Davis PJ, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • D’Urso MG (2012) New expressions of the gravitational potential and its derivatives for the prism. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy. Springer, Berlin, pp 251–256

    Chapter  Google Scholar 

  • D’Urso MG (2013) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geod 87(3):239–252

    Article  Google Scholar 

  • D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geod 88(1):13–29

    Article  Google Scholar 

  • D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Celest Mech Dyn Astron 120(4):349–372

    Article  Google Scholar 

  • D’Urso MG (2016) A remark on the computation of the gravitational potential of masses with linearly varying density. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VIII Hotine-Marussi symposium on mathematical geodesy. Springer, Cham, pp 205–212

    Google Scholar 

  • D’Urso MG, Trotta S (2015) Comparative assessment of linear and bilinear prism-based strategies for terrain correction computations. J Geod 89(3):199–215

    Article  Google Scholar 

  • D’Urso MG, Trotta S (2017) Gravity anomaly of polyhedral bodies having a polynomial density contrast. Surv Geophys 38(4):781–832

    Article  Google Scholar 

  • Farquharson C, Mosher C (2009) Three-dimensional modelling of gravity data using finite differences. J Appl Geophys 68(3):417–422

    Article  Google Scholar 

  • Fukushima T (2017) Precise and fast computation of the gravitational field of a general finite body and its application to the gravitational study of asteroid Eros. Astron J 154(4):145–159

    Article  Google Scholar 

  • Fukushima T (2018) Recursive computation of gravitational field of a right rectangular parallelepiped with density varying vertically by following an arbitrary degree polynomial. Geophys J Int 215(2):864–879

    Article  Google Scholar 

  • Garcia-Abdeslem J (2005) The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70(6):J39–J42

    Article  Google Scholar 

  • Garcia-Abdeslem J (2017) Nonlinear inversion of isostatic residual gravity data from Montage Basin, northern Gulf of California. Geophysics 82(3):G45–G55

    Article  Google Scholar 

  • Gharti HN, Tromp J, Zampini S (2018) Spectral-infinite-element simulations of gravity anomalies. Geophys J Int 215(2):1098–1117

    Article  Google Scholar 

  • Goodacre AK (1973) Some comments on the calculation of the gravitational and magnetic attraction of a homogeneous rectangular prism. Geophys Prospect 21(1):66–69

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products, 7th edn. Academic Press, New York

    Google Scholar 

  • Hamayun Prutkin I, Tenzer R (2009) The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J Geod 83(12):1163–1170

    Article  Google Scholar 

  • Hansen RO (1999) An analytical expression for the gravity field of a polyhedral body with linearly varying density. Geophysics 64(1):75–77

    Article  Google Scholar 

  • Hautmann S, Camacho AG, Gottsmann J, Odbert HM, Syers RT (2013) The shallow structure beneath Montserrat (West Indies) from new Bouguer gravity data. Geophys Res Lett 40(19):5113–5118

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer, Berlin

    Google Scholar 

  • Holstein H (2002) Gravimagnetic similarity in anomaly formulas for uniform polyhedra. Geophysics 67(4):1126–1133

    Article  Google Scholar 

  • Holstein H (2003) Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 68(1):157–167

    Article  Google Scholar 

  • Holstein H, Ketteridge B (1996) Gravimetric analysis of uniform polyhedra. Geophysics 61(2):357–364

    Article  Google Scholar 

  • Holstein H, Schürholz P, Starr AJ, Chakraborty M (1999) Comparison of gravimetric formulas for uniform polyhedra. Geophysics 64(5):1438–1446

    Article  Google Scholar 

  • Jahandari H, Farquharson CG (2013) Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids. Geophysics 78(3):G69–G80

    Article  Google Scholar 

  • Jarvenpaa S, Taskinen M, Yla-Oijala P (2003) Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra. Int J Numer Methods Eng 58(8):1149–1165

    Article  Google Scholar 

  • Jarvenpaa S, Taskinen M, Yla-Oijala P (2006) Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles. IEEE Trans Antennas Propag 54(1):42–49

    Article  Google Scholar 

  • Jiang L, Zhang J, Feng Z (2017) A versatile solution for the gravity anomaly of 3D prism-meshed bodies with depth-dependent density contrast. Geophysics 82(4):G77–G86

    Article  Google Scholar 

  • Jiang L, Liu J, Zhang J, Feng Z (2018) Analytic expressions for the gravity gradient tensor of 3D prisms with depth-dependent density. Surv Geophys 39(3):337–363

    Article  Google Scholar 

  • Karcol R (2018) The gravitational potential and its derivatives of a right rectangular prism with depth-dependent density following an n-th degree polynomial. Stud Geophys Geod 62(3):427–449

    Article  Google Scholar 

  • Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ Library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3–4):237–254

    Article  Google Scholar 

  • Li X, Chouteau M (1998) Three-dimensional gravity modeling in all space. Surv Geophys 19(4):339–368

    Article  Google Scholar 

  • Liu J, Zhang J, Jiang L, Lin Q, Wan L (2019) Polynomial-based density inversion of gravity anomalies for concealed iron-deposit exploration in North China. Geophysics 84(5):B325–B334

    Article  Google Scholar 

  • Long J, Farquharson CG (2019) Three-dimensional forward modelling of gravity data using mesh-free methods with radial basis functions and unstructured nodes. Geophys J Int 217(3):1577–1601

    Google Scholar 

  • Martin-Atienza B, Garcia-Abdeslem J (1999) 2-D gravity modeling with analytically defined geometry and quadratic polynomial density functions. Geophysics 64(6):1730–1734

    Article  Google Scholar 

  • Martinez C, Li Y, Krahenbuhl R, Braga MA (2013) 3D inversion of airborne gravity gradiometry data in mineral exploration: a case study in the Quadrilátero Ferrífero, Brazil. Geophysics 78(1):B1–B11

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74(7–8):552–560

    Article  Google Scholar 

  • Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics 44(4):730–741

    Article  Google Scholar 

  • Panet I, Pajot-Métivier G, Grefflefftz M, Métivier L, Diament M, Mandea M (2014) Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients. Nat Geosci 7(2):131–135

    Article  Google Scholar 

  • Paul MK (1974) The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure Appl Geophys 112(3):553–561

    Article  Google Scholar 

  • Pedersen LB, Bastani M, Kamm J (2015) Gravity gradient and magnetic terrain effects for airborne applications—a practical fast Fourier transform technique. Geophysics 80(2):J19–J26

    Article  Google Scholar 

  • Pohanka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36(7):733–751

    Article  Google Scholar 

  • Pohanka V (1998) Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys Prospect 46(4):391–404

    Article  Google Scholar 

  • Ren Z, Chen C, Pan K, Kalscheuer T, Maurer H, Tang J (2017) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts. Surv Geophys 38(2):479–502

    Article  Google Scholar 

  • Ren Z, Zhong Y, Chen C, Tang J, Kalscheuer T, Maurer H, Li Y (2018a) Gravity gradient tensor of arbitrary 3D polyhedral bodies with up to third-order polynomial horizontal and vertical mass contrasts. Surv Geophys 39(5):901–935

    Article  Google Scholar 

  • Ren Z, Zhong Y, Chen C, Tang J, Pan K (2018b) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order. Geophysics 83(1):G1–G13

    Article  Google Scholar 

  • Reudink R, Klees R, Francis O, Kusche J, Schlesinger R, Shabanloui A, Sneeuw N, Timmen L (2014) High tilt susceptibility of the Scintrex CG-5 relative gravimeters. J Geod 88(6):617–622

    Article  Google Scholar 

  • Shin YH, Choi KS, Xu H (2006) Three-dimensional forward and inverse models for gravity fields based on the fast Fourier transform. Comput Geosci 32(6):727–738

    Article  Google Scholar 

  • Smith DA (2000) The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. J Geod 74(5):414–420

    Article  Google Scholar 

  • Sulaiman A, Elawadi E, Mogren S (2018) Gravity interpretation to image the geologic structures of the coastal zone in al Qunfudhah area, southwest Saudi Arabia. Geophys J Int 214(3):1623–1632

    Article  Google Scholar 

  • Tai CT (1994) Dyadic Green functions in electromagnetic theory. Institute of Electrical & Electronics Engineers (IEEE), Piscataway, NJ

    Google Scholar 

  • Tihon D, Craeye C (2018) All-analytical evaluation of the singular integrals involved in the method of moments. IEEE Trans Antennas Propag 66(4):1925–1936

    Article  Google Scholar 

  • Tsoulis D (2012) Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77(2):F1–F11

    Article  Google Scholar 

  • Tsoulis D, Petrovi S (2001) On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66(2):535–539

    Article  Google Scholar 

  • Tsoulis D, Wziontek H, Petrović S (2003) A bilinear approximation of the surface relief in terrain correction computations. J Geod 77(5):338–344

    Article  Google Scholar 

  • Tsoulis D, Jamet O, Verdun J, Gonindard N (2009) Recursive algorithms for the computation of the potential harmonic coefficients of a constant density polyhedron. J Geod 83(10):925–942

    Article  Google Scholar 

  • Van Camp M, de Viron O, Watlet A, Meurers B, Francis O, Caudron C (2017) Geophysics from terrestrial time-variable gravity measurements. Rev Geophys 55(4):938–992

    Article  Google Scholar 

  • Wan L, Zhang J (2019) Analytical solutions of gravity vector and gravity gradient tensor caused by a 2D polygonal body with a 2D polynomial density contrast. Surv Geophys 40(5):B325–B334

    Article  Google Scholar 

  • Welford JK, Peace AL, Geng M, Dehler SA, Dickie K (2018) Crustal structure of Baffin Bay from constrained three-dimensional gravity inversion and deformable plate tectonic models. Geophys J Int 214(2):1281–1300

    Article  Google Scholar 

  • Werner RA (2017) The solid angle hidden in polyhedron gravitation formulations. J Geod 91(3):307–328

    Article  Google Scholar 

  • Wilton D, Rao S, Glisson A, Schaubert D, Al-Bundak O, Butler C (1984) Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans Antennas Propag 32(3):276–281

    Article  Google Scholar 

  • Wu L (2018a) Comparison of 3-D Fourier forward algorithms for gravity modelling of prismatic bodies with polynomial density distribution. Geophys J Int 215(3):1865–1886

    Article  Google Scholar 

  • Wu L (2018b) Efficient modeling of gravity fields caused by sources with arbitrary geometry and arbitrary density distribution. Surv Geophys 39(3):401–434

    Article  Google Scholar 

  • Wu L (2019) Fourier-domain modeling of gravity effects caused by polyhedral bodies. J Geod 93(5):635–653

    Article  Google Scholar 

  • Wu L, Chen L (2016) Fourier forward modeling of vector and tensor gravity fields due to prismatic bodies with variable density contrast. Geophysics 81(1):G13–G26

    Article  Google Scholar 

  • Ye Z, Tenzer R, Sneeuw N, Liu L, Wild-Pfeiffer F (2016) Generalized model for a Moho inversion from gravity and vertical gravity-gradient data. Geophys J Int 207(1):111–128

    Article  Google Scholar 

  • Yla-Oijala P, Taskinen M (2003) Calculation of CFIE impedance matrix elements with RWG and n x RWG functions. IEEE Trans Antennas Propag 51(8):1837–1846

    Article  Google Scholar 

  • Zhang J, Jiang L (2017) Analytical expressions for the gravitational vector field of a 3-D rectangular prism with density varying as an arbitrary-order polynomial function. Geophys J Int 210(2):1176–1190

    Article  Google Scholar 

  • Zhao G, Chen B, Chen L, Liu J, Ren Z (2018) High-accuracy 3D Fourier forward modeling of gravity field based on the Gauss-FFT technique. J Appl Geophys 150:294–303

    Article  Google Scholar 

  • Zhou X (2009) 3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast. Geophysics 74(6):I43–I53

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) (41830107, 41922027), a joint China–Sweden mobility project funded by NSFC through project number 4171101400 and by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) through Project No. CH2017-7233, the China Scholarship Council Foundation (201806370223), the National Natural Science Foundation of Hunan Province of China (2019JJ20032) and the Innovation-Driven Project of Central South University (2020CX012). Our sincere thanks are given to the editor and two anonymous reviewers for their critical comments which significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaojian Chen or Jingtian Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Closed-Form Solution for Volume Integral \(I_v(0,0,0,w)\)

Appendix: Closed-Form Solution for Volume Integral \(I_v(0,0,0,w)\)

Following our previous work (Chen et al. 2018, equation 24 therein), the closed-form and singularity-free solution for volume integral \(I_v(0,0,0,w)\,(w=-1,1,3,\ldots ,\infty )\) can be expressed as:

$$\begin{aligned} {I_v(0,0,0,w)=\iiint \limits _{H}R^{w}{\mathrm{d}}v = -\frac{1}{w+3}\sum _{i=1}^{N}h_i I_s(0,0,0, w),} \end{aligned}$$
(43)

transforming the volume integral \(I_v(0,0,0,w)\) into N surface integrals \(I_s(0,0,0,w)\), which can be calculated by:

$$\begin{aligned} I_s(0,0,0,w)& {} = \iint \limits _{\partial {H}_{i}}R^{w}{\mathrm{d}}s={\frac{1}{w+2}\sum _{j=1}^{M_i}m_{ij}\int _{C_{ij}} \frac{R^{w+2}}{\tau _{ij}^2}{\mathrm{d}}l-\frac{\beta ({\mathbf {o}}_i)}{w+2}|h_i|^{w+2}} \\& {} = {\frac{1}{w+2}\sum _{j=1}^{M_i}B_{ij}^{w+2} -\frac{\beta ({\mathbf {o}}_i)}{w+2}|h_i|^{w+2},} \end{aligned}$$
(44)

where \(\tau _{ij}=|{\mathbf {r}}-{\mathbf {o}}_i|\) is the distance from point \({\mathbf {r}}\) to point \({\mathbf {o}}_i\). \(\beta ({\mathbf {o}}_i)\) is the solid angle which can be calculated by the following formula:

$$\begin{aligned} {\beta ({\mathbf {o}}_i) = \sum _{j=1}^{M_i}{\hat{{\mathbf {m}}}}_{ij}\cdot \hat{\varvec{\rho }}_{ij}^{\perp }\left( \arctan {\frac{s_{1ij}}{|m_{ij}|}}-\arctan {\frac{s_{0ij}}{|m_{ij}|}}\right) ,} \end{aligned}$$
(45)

where \(\hat{\varvec{\rho }}_{ij}^{\perp }\) is the unit vector from point \({\mathbf {o}}_i\) to point \({\mathbf {r}}_{ij}^{\perp }\) (the projection point of point \({\mathbf {o}}_i\) onto edge \(C_{ij}\)). Note that \(\hat{\varvec{\rho }}_{ij}^{\perp }\) is either parallel or antiparallel to \({{\hat{{\mathbf {m}}}}}_{ij}\). The line integral in Eq. (44) is recursively computed by:

$$\begin{aligned} {B_{ij}^{w+2} = m_{ij}\int _{C_{ij}}\frac{R^{w+2}}{\tau _{ij}^2}{\mathrm{d}}l=m_{ij}L(0,w)+h_i^2 B_{ij}^{w}.} \end{aligned}$$
(46)

The initial line integral of the second term on the right-hand side of Eq. (46) is:

$$\begin{aligned} {B_{ij}^{1} =|h_i|\left( \arctan {\frac{|h_i|s_{1ij}}{m_{ij} R_{1ij}}}-\arctan {\frac{|h_i|s_{0ij}}{m_{ij} R_{0ij}}} \right) +m_{ij}\ln {\frac{s_{1ij}+R_{1ij}}{s_{0ij}+R_{0ij}}},} \end{aligned}$$
(47)

and the closed-form solution for the line integral L(0, w) in the first term on the right-hand side is (Gradshteyn and Ryzhik 2007, equation (2.260)):

$$\begin{aligned} {L(0,w)=\int _{C_{ij}}R^{w}{\mathrm{d}}l = \left. \frac{s_{ij}R^{w}}{w+1}\right| _{s_{0ij}}^{s_{1ij}}+\frac{w}{w+1}\left( h_i^2+m_{ij}^2\right) L(0,w-2),} \end{aligned}$$
(48)

with the initial integral being:

$$\begin{aligned} {L(0,1)=\int _{C_{ij}}R {\mathrm{d}}l = \frac{1}{2}\left[ (h_i^2+m_{ij}^2)\ln {\frac{s_{1ij}+R_{1ij}}{s_{0ij}+R_{0ij}}}+s_{1ij}R_{1ij}-s_{0ij}R_{0ij} \right] .} \end{aligned}$$
(49)

Note that the above closed-form expressions for \(I_v(0,0,0,w)\) (\(w=-1,1,3,\ldots ,\infty\)), which are based on the solutions for \(I_s(0,0,0,w)\) and L(0, w), are singularity-free. This means that the scalar components \(\phi (p,q,t)\) in Eq. (37) and vector components \({\mathbf {g}}(p,q,t)\) in Eq. (38) can be calculated without singularities.

To calculate the gravitational gradient tensor, the tensor components \({\mathbf {T}}(p,q,t)\) in Eq. (39), including the surface integral \(h_i I_s(0,0,0,-3)\), have to be evaluated. For \(h_i I_s(0,0,0,-3)\), the closed-form solutions in Eqs. (44) and (46) can be applied, but with the following initial integrals:

$$\begin{aligned} {h_i B_{ij}^{-1} = \cot {\frac{|h_i|s_{1ij}}{m_{ij} R_{1ij}}}-\cot {\frac{|h_i|s_{0ij}}{m_{ij} R_{0ij}}},} \end{aligned}$$
(50)

and

$$\begin{aligned} {L(0,-1)=\int _{C_{ij}}R^{-1} {\mathrm{d}}l = \left\{ {\begin{array}{*{20}{l}} \ln \left( \frac{s_{1ij}+R_{1ij}}{s_{0ij}+R_{0ij}}\right) ,&\quad \text {if}\quad (h_i^2+m_{ij}^2)\ne 0,\\ \left| \ln \frac{s_{1ij}}{s_{0ij}}\right|,& \quad {\text {if}}\quad (h_i^2+m_{ij}^2)=0\quad {\text {and}}\quad {{\mathbf {r}}'} \notin C_{ij}. \end{array}}\right. } \end{aligned}$$
(51)

Weak logarithmic singularities exist in computation of line integral \(L(0,-1)\) in Eq. (51) when the observation site locates on the edge of the polyhedral body.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Chen, C., Zhong, Y. et al. Recursive Analytical Formulae of Gravitational Fields and Gradient Tensors for Polyhedral Bodies with Polynomial Density Contrasts of Arbitrary Non-negative Integer Orders. Surv Geophys 41, 695–722 (2020). https://doi.org/10.1007/s10712-020-09587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-020-09587-4

Keywords

Navigation