Skip to main content
Log in

Effects of Porous Fins on Mixed Convection and Heat Transfer Mechanics in Lid-Driven Cavities: Full Numerical Modeling and Parametric Simulations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The present study presents a comprehensive analysis of effects of porous fins on mixed convection heat transfer in lid-driven square cavities, where the top lid has the two-way movement. Porous medium with varying permeability, instead of the solid one, could widely modify its baffling effect on fluid flow and could also be utilized to control fluid flow and heat transfer. Fluid flow within the cavity was solved through the Navier–Stokes equations, while that within a saturated porous medium was governed by the Darcy–Forchheimer model. Numerical results indicate that the adding porous fins with excellent permeability could enhance heat transfer dramatically, especially for more fins. The rate of heat transfer enhancement due to an increase in Darcy number decreases, and similar trends were observed for the quantitative variations of porous fins. Besides, positions of porous fins have significant effects on fluid flow and heat transfer. The correlations of average Nusselt numbers, as functions of various governing parameters, have been proposed. The present investigations could be beneficial to the design of the microelectronic cooling through the installation of porous-alike materials or modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

Coefficients of correlations of the average Nusselt number

A :

Coefficient in the discretized equations

C F :

Inertia coefficient

Da:

Darcy number

g :

Gravity acceleration (m s−2)

Gr:

Grashof number

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability (m2)

H :

Heat function

I, J :

Nodal index along X- and Y-axes, respectively

l fin :

Length of the fin (m)

L :

Length of enclosure (m)

L fin :

Dimensionless length of the fin

n :

Unit normal vector

N :

Number of the fins

Nu:

Nusselt number

p :

Dimensional pressure (Pa)

P :

Dimensionless pressure

Pr:

Prandtl number

Q Φ :

Source term of the discretized governing equation

Ra:

Rayleigh number (Ra = GrPr)

Ri:

Richardson number

R 2 :

Square value of regression coefficient

T :

Dimensional temperature (K)

T c :

Cooling temperature (K)

T h :

High temperature (K)

u 0 :

Dimensional velocity of the lid (m s−1)

U 0 :

Dimensionless velocity of the lid

(u, v):

Dimensional velocities (m s−1)

(U, V):

Dimensionless velocities

(x, y):

Dimensional Cartesian coordinates

(X, Y):

Dimensionless Cartesian coordinates

α :

Thermal diffusivity (m2 s)

β T :

Thermal expansion coefficient (K−1)

δ :

Stop criterion

ε :

Porosity

θ :

Dimensionless temperature

λ :

Thermal conductivity ratio

μ :

Dynamic viscosity (N m−2 s)

υ :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

Φ :

General variable (U, V, P or T)

χ :

Parameter for the unification of governing equations

Ψ :

Stream function

Ω :

Control volume for variables

c:

Cooling temperature

e, w, n, s:

Values at the control-volume faces

E, W, N, S:

Values at the nodal points

eff:

Effective

fin:

Porous fin

nb:

Neighbour nodal points

P:

Main nodal points

s:

Porous matrix

m :

Internal iteration number

n :

External iteration number

* :

Uncorrected value

\('\) :

Corrected value

–:

Average value of volume

References

  • Ababaei, A., Abbaszadeh, M., Arefmanesh, A., Chamkha, A.J.: Numerical simulation of double-diffusive mixed convection and entropy generation in a lid-driven trapezoidal enclosure with a heat source. Numer. Heat Transf. A 73(10), 702–720 (2018)

    Google Scholar 

  • Aidun, C.K., Triantafillopoulos, N.G., Benson, J.D.: Global stability of a lid-driven cavity with throughflow-flow visualization studies. Phys. Fluids 3(9), 2081–2091 (1991)

    Google Scholar 

  • Al-Amiri, A.M.: Analysis of momentum and energy transfer in a lid-driven cavity filled with a porous medium. Int. J. Heat Mass Transf. 43, 3513–3527 (2000)

    Google Scholar 

  • Al-Amiri, A., Khanafer, K., Bull, J., Pop, I.: Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity. Int. J. Heat Mass Transf. 50, 1771–1780 (2007a)

    Google Scholar 

  • Al-Amiri, A.M., Khanafer, K.M., Pop, I.: Numerical simulation of combined thermal and mass transport. Int. J. Therm. Sci. 46, 662–671 (2007b)

    Google Scholar 

  • Albensoeder, S., Kuhlmann, H.C., Rath, H.J.: Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids 13(1), 121–135 (2001)

    Google Scholar 

  • Alhashash, A., Saleh, H., Hashim, I.: Conjugate natural convection in a porous enclosure sandwiched by finite walls under the influence of non-uniform heat generation and radiation. Transp. Porous Media 99(3), 453–465 (2013)

    Google Scholar 

  • Ali, N., Nazeer, M., Javed, T., Abbas, F.: A numerical study of micropolar flow inside a lid-driven triangular enclosure. Meccanica 53, 3279–3299 (2018)

    Google Scholar 

  • Alinia, M., Ganji, D.D., Bandpy, M.G.: Numerical study of mixed convection in an inclined two sided lid-driven cavity filled with nanofluid using two-phase mixture model. Int. Commun. Heat Mass 38, 1428–1435 (2011)

    Google Scholar 

  • Al-Kouz, W., Alshare, A., Kiwan, S., Al-Muhtady, A., Alkhalidi, A., Saadeh, H.: Two-dimensional analysis of low-pressure flows in an inclined square cavity with two fins attached to the hot wall. Int. J. Therm. Sci. 126, 181–193 (2018)

    Google Scholar 

  • Alleborn, N., Raszillier, H., Durst, F.: Lid-driven cavity with heat and mass transport. Int. J. Heat Mass Transf. 42, 833–853 (1999)

    Google Scholar 

  • Alshuraiaan, B., Khanafer, K.: The effect of the position of the heated thin porous fin on the laminar natural convection heat transfer in a differentially heated cavity. Int. Commun. Heat Mass 78, 190–199 (2016)

    Google Scholar 

  • Asiaei, S., Zadehkafi, A., Siavashi, M.: Multi-layered porous foam effects on heat transfer and entropy generation of nanofluid mixed convection inside a two-sided lid-driven enclosure with internal heating. Trans. Porous Media 126, 223–247 (2019)

    Google Scholar 

  • Asl, A.K., Hossainpour, S., Rashidi, M.M., Sheremet, M.A., Yang, Z.: Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure. Int. J. Heat Mass Transf. 113, 729–744 (2019)

    Google Scholar 

  • Astanina, M.S., Sheremet, M.A., Oztop, H.F., Abu-Hamdeh, N.: MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int. J. Mech. Sci. 136, 493–502 (2018)

    Google Scholar 

  • Aydin, O., Yang, W.J.: Mixed convection in cavities with a locally heated lower wall and moving sidewalls. Numer. Heat Transf. A 37, 695–710 (2000)

    Google Scholar 

  • Barletta, A., Rees, D.A.S.: Unstable mixed convection flow in a horizontal porous channel with uniform wall heat flux. Transp. Porous Media 129(1), 385–402 (2019)

    Google Scholar 

  • Baytas, A.F., Baytas, A.C.: Thermal non-equilibrium natural convection in a square enclosure with heat-generating porous layer on inner walls. Transp. Porous Media 120(1), 167–182 (2017)

    Google Scholar 

  • Bhanja, D., Kunda, B., Aziz, A.: Enhancement of heat transfer from a continuously moving porous fin exposed in convective-radiative environment. Energy Convers. Manag. 88, 842–853 (2014)

    Google Scholar 

  • Billah, M.M., Rahman, M.M., Sharif, U., Rahim, N.A., Saidur, R., Hasanuzzaman, M.: Numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having a heated circular hollow cylinder. Int. Commun. Heat Mass 38, 1093–1103 (2011)

    Google Scholar 

  • Biswas, N., Manna, N.K.: Enhanced convection heat transfer in lid-driven porous cavity with aspiration. Int. J. Heat Mass Transf. 114, 430–452 (2017)

    Google Scholar 

  • Biswas, N., Manna, N.K., Mahapatra, P.S.: Enhanced thermal energy transport using adiabatic block inside lid-driven cavity. Int. J. Heat Mass Transf. 100, 407–427 (2016)

    Google Scholar 

  • Bouffanais, R., Deville, M.O., Leriche, E.: Large-eddy simulation of the flow in a lid-driven cubical cavity. Phys. Fluids 19, 055108 (2007)

    Google Scholar 

  • Chamkha, A.J., Rashad, A.M., Mansour, M.A., Armaghani, T., Ghalambaz, M.: Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu–water nanofluid in a lid-driven square porous enclosure with partial slip. Phys. Fluids 29, 052001 (2017)

    Google Scholar 

  • Chatterjee, D., Halder, P.: Magnetoconvective transport in a lid-driven square enclosure with two rotating circular cylinders. Heat Transfer Eng. 37(2), 198–206 (2016)

    Google Scholar 

  • Chatterjee, D., Mondal, B., Halder, P.: Hydromagnetic mixed convective transport in a vertical lid-driven cavity including a heat conducting rotating circular cylinder. Numer. Heat Transf. A 65, 48–65 (2014)

    Google Scholar 

  • Chen, C.L., Chung, Y.C.: Numerical study on mixed convection heat transfer in inclined triangular cavities. Numer. Heat Transf. A 67, 651–672 (2015)

    Google Scholar 

  • Cheng, T.S.: Characteristics of mixed convection heat transfer in a lid-driven square cavity with various Richardson and Prandtl numbers. Int. J. Therm. Sci. 50, 197–205 (2011)

    Google Scholar 

  • Darvishi, M.T., Gorla, R.S.R., Khani, F.: Natural convection and radiation in porous fins. Int. J. Numer. Methods Heat Fluids Flow 23(8), 1406–1420 (2013)

    Google Scholar 

  • Darzi, A.A.R., Farhadi, M., Lavasani, A.M.: Two phase mixture model of nano-enhanced mixed convection heat transfer in finned enclosure. Chem. Eng. Res. Des. 3, 294–304 (2016)

    Google Scholar 

  • Feng, S.S., Li, F.C., Zhang, F.H., Lu, T.J.: Natural convection in metal foam heat sinks with open slots. Exp. Therm. Fluid Sci. 91, 354–362 (2018)

    Google Scholar 

  • Gangawane, K.M.: Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: effect of Prandtl and Grashof numbers. Int. J. Heat Mass Transf. 105, 34–57 (2017)

    Google Scholar 

  • Ghalambaz, M., Moattar, F., Sheremet, M.A., Pop, I.: Triple-diffusive natural convection in a square porous cavity. Transp. Porous Media 111(1), 59–79 (2016)

    Google Scholar 

  • Ghasemi, B., Aminossadati, S.M.: Comparison of mixed convection in a square cavity with an oscillating versus a constant wall. Numer. Heat Transf. A 54, 726–743 (2008)

    Google Scholar 

  • Ghasemi, B., Aminossadati, S.M.: Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int. Commun. Heat Mass 37, 1142–1148 (2010)

    Google Scholar 

  • Gibanov, N.S., Sheremet, M.A., Ismael, M.A., Chamkha, A.J.: Mixed convection in a ventilated cavity filled with a triangular porous layer. Transp. Porous Media 120(1), 1–21 (2017a)

    Google Scholar 

  • Gibanov, N.S., Sheremet, M.A., Oztop, H.F., Abu-Hamdeh, N.: Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int. J. Heat Mass Transf. 114, 1086–1097 (2017b)

    Google Scholar 

  • Hussain, S., Mehmood, K., Sagheer, M.: MHD mixed convection and entropy generation of water-alumina nanofluid flow in a double lid driven cavity with discrete heating. J. Magn. Magn. Mater. 419, 140–155 (2016)

    Google Scholar 

  • Imani, G., Hooman, K.: Lattice Boltzmann pore scale simulation of natural convection in a differentially heated enclosure filled with a detached or attached bidisperse porous medium. Transp. Porous Media 116(1), 91–113 (2017)

    Google Scholar 

  • Ismael, M.A., Chamkha, A.J.: Mixed convection in lid-driven trapezoidal cavities with an aiding or op posing side wall. Numer. Heat Transf. A 68, 312–335 (2015)

    Google Scholar 

  • Iwatsu, R., Hyun, J.M., Kuwahara, K.: Mixed convection in a driven cavity with a stable vertical temperature gradient. Int. J. Heat Mass Transf. 36, 1601–1608 (1993)

    Google Scholar 

  • Kalteh, M., Javaherdeh, K., Azarbarzin, T.: Numerical solution of nanofluid mixed convection heat transfer in a lid-driven square cavity with a triangular heat source. Powder Technol. 253, 780–788 (2014)

    Google Scholar 

  • Kandaswamy, P., Eswaramurthi, M., Lee, J.: Density maximum effect on double-diffusive natural convection in a porous cavity with variable wall temperature. Transp. Porous Media 73(2), 195–210 (2008)

    Google Scholar 

  • Khanafer, K., Aithal, S.M.: Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder. Int. J. Heat Mass Transf. 66, 200–209 (2013)

    Google Scholar 

  • Khanafer, K.M., Chamhka, A.J.: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int. J. Heat Mass Transf. 42, 2465–2481 (1999)

    Google Scholar 

  • Khanafer, K.M., Al-Amiri, A.M., Pop, I.: Numerical simulation of unsteady mixed convection in a lid driven cavity using an externally excited sliding lid. Eur. J. Mech. B-Fluid 26, 669–687 (2007)

    Google Scholar 

  • Khanafer, K., Al-Amiri, A., Bull, J.: Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall. Int. J. Heat Mass Transf. 87, 59–70 (2015)

    Google Scholar 

  • Kimura, S., Bejan, A.: The “Heatline” visualization of convective heat transfer. J. Heat Transfer 105, 916–919 (1983)

    Google Scholar 

  • Kiwan, S.: Thermal analysis of natural convection porous fins. Transp. Porous Media 67(1), 17–29 (2007)

    Google Scholar 

  • Kiwan, S.: On the natural convection heat transfer from an inclined surface with porous fins. Transp. Porous Media 127(2), 295–307 (2019)

    Google Scholar 

  • Kumar, J.P., Umavathi, J.C., Pop, I., Biradar, B.M.: Fully developed mixed convection flow in a vertical channel containing porous and fluid layer with isothermal or isoflux boundaries. Transp. Porous Media 80(1), 117–135 (2009)

    Google Scholar 

  • Kundu, B., Lee, K.B.: Exact analysis for minimum shape of porous fins under convection and radiation heat exchange with surrounding. Int. J. Heat Mass Transf. 81, 439–448 (2015)

    Google Scholar 

  • Lamarti, H., Mahdaoui, M., Bennacer, R., Chahboun, A.: Numerical simulation of mixed convection heat transfer of fluid in a cavity driven by an oscillating using lattice Boltzmann method. Int. J. Heat Mass Transf. 137, 615–629 (2019)

    Google Scholar 

  • Le Quere, P.: Accurate solutions to the square thermally driven cavity at high Rayleigh number. Comput. Fluids 20, 29–41 (1991)

    Google Scholar 

  • Leriche, E., Gavrilakis, S.: Direct numerical simulation of the flow in a lid-driven cubical cavity. Phys. Fluids 12(6), 1363–1376 (2000)

    Google Scholar 

  • Liu, D., Zhao, F.Y., Tang, G.F.: Conjugate heat transfer in an enclosure with a centered conducting body imposed sinusoidal temperature profiles on one side. Numer. Heat Transf. A 53, 204–223 (2008)

    Google Scholar 

  • Liu, D., Zhao, F.Y., Wang, H.Q.: Passive heat and moisture removal from a natural vented enclosure with a massive wall. Energy 36, 2867–2882 (2011)

    Google Scholar 

  • Mahapatra, S.K., Sarkar, A., Sarkar, A.: Numerical simulation of opposing mixed convection in differentially heated square enclosure with partition. Int. J. Therm. Sci. 46, 970–979 (2007)

    Google Scholar 

  • Mamourian, M., Shirvan, K.M., Ellahi, R., Rahimi, A.B.: Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int. J. Heat Mass Transf. 102, 544–554 (2016)

    Google Scholar 

  • Mansour, M.A., El-Aziz, M.M.A., Mohamed, R.A., Ahmed, S.E.: Numerical simulation of natural convection in wavy porous cavities under the influence of thermal radiation using a thermal non-equilibrium model. Transp. Porous Media 86(2), 586–600 (2011)

    Google Scholar 

  • Mastiani, M., Kim, M.M., Nematollahi, A.: Density maximum effects on mixed convection in a square lid-driven enclosure filled with Cu-water nanofluids. Adv. Powder Technol. 28, 197–214 (2017)

    Google Scholar 

  • Mehmood, K., Hussian, S., Sagheer, M.: Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: introduction. Int. J. Heat Mass Transf. 109, 397–409 (2017)

    Google Scholar 

  • Misirlioglu, A., Baytas, A.C., Pop, I.: Natural convection inside an inclined wavy enclosure filled with a porous medium. Transp. Porous Media 64(2), 229–246 (2006)

    Google Scholar 

  • Moallemi, M.K., Jang, K.S.: Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int. J. Heat Mass Transf. 35(8), 1881–1892 (1992)

    Google Scholar 

  • Mondal, S., Sibanda, P.: Unsteady double diffusive convection in an inclined rectangular lid-driven enclosure with different magnetic field angles and non-uniform boundary conditions. Int. J. Heat Mass Transf. 90, 900–910 (2015)

    Google Scholar 

  • Moradi, A., Hayat, T., Alsaedi, A.: Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Convers. Manag. 77, 70–77 (2014)

    Google Scholar 

  • Muthtamilselvan, M., Das, M.K., Kandaswamy, P.: Convection in a lid-driven heat-generating porous cavity with alternative thermal boundary conditions. Transp. Porous Media 82, 337–346 (2010)

    Google Scholar 

  • Nasrin, R.: Influences of physical parameters on mixed convection in a horizontal lid-driven cavity with an undulating base surface. Numer. Heat Transf. A 61, 306–321 (2012)

    Google Scholar 

  • Nemati, H., Farhadi, M., Sedighi, K., Fattahi, E., Darzi, A.A.R.: Lattice Boltzmann simulation of nanofluid in lid-driven cavity. Int. Commun. Heat Mass 37, 1528–1534 (2010)

    Google Scholar 

  • Ogut, E.B.: Magnetohydrodynamic mixed convection in a lid-driven rectangular enclosure partially heated at the bottom and cooled at the top. Therm. Sci. 21(21), 863–874 (2017)

    Google Scholar 

  • Ouertatani, N., Cheikh, N.B., Beya, B.B., Lili, T., Campo, A.: Mixed convection in a double lid-driven cubic cavity. Int. J. Therm. Sci. 48, 1265–1272 (2011)

    Google Scholar 

  • Oztop, H.F.: Combined convection heat transfer in a porous lid-driven enclosure due to heater with finite length. Int. Commun. Heat Mass 33, 772–779 (2006)

    Google Scholar 

  • Oztop, H.F., Sun, C.Z., Yu, B.: Conjugate-mixed convection heat transfer in a lid-driven enclosure with thick bottom wall. Int. Commun. Heat Mass 35, 779–785 (2008)

    Google Scholar 

  • Oztop, H.F., Zhao, Z.P., Yu, B.: Fluid flow due to combined convection in lid-driven enclosure having a circular body. Int. J. Heat Fluid Flow 30, 886–901 (2009)

    Google Scholar 

  • Oztop, H.F., Al-Salem, K., Pop, I.: MHD mixed convection in a lid-driven cavity with corner heater. Int. J. Heat Mass Transf. 54, 3494–3504 (2011)

    Google Scholar 

  • Pal, S.K., Bhattacharyya, S., Pop, I.: Effect of solid-to-solid conductivity ratio on mixed convection and entropy generation of a nanofluid in a lid-driven enclosure with a thick wavy wall. Int. J. Heat Mass Transf. 127, 885–900 (2018)

    Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC (1980)

    Google Scholar 

  • Patil, D.V., Lakshmisha, K.N., Rogg, B.: Lattice Boltzmann simulation of lid-driven flow in deep cavities. Comput. Fluids 35, 1116–1125 (2006)

    Google Scholar 

  • Pekmen, B., Sezgin, M.T.: MHD flow and heat transfer in a lid-driven porous enclosure. Comput. Fluids 89, 191–199 (2014)

    Google Scholar 

  • Rahman, M.M., Alim, M.A., Sarker, M.M.A.: Numerical study on the conjugate effect of joule heating and magnato-hydrodynamics mixed convection in an obstructed lid-driven square cavity. Int. Commun. Heat Mass 37, 524–534 (2010)

    Google Scholar 

  • Rahman, M.M., Rahim, N.A., Saha, S., Billah, M.M., Saidur, R., Ahsan, A.: Optimization of mixed convection in a lid-driven enclosure with a heat generating circular body. Numer. Heat Transf. A 60, 629–650 (2011)

    Google Scholar 

  • Rahman, M.M., Billah, M.M., Rahim, N.A., Saidur, R., Hasanuzzaman, M.: Finite element simulation of magnetohydrodynamic mixed convection in a double-lid driven enclosure with a square heat-generating block. J. Heat Transfer 134, 062501 (2012)

    Google Scholar 

  • Rahman, M.M., Oztop, H.F., Mehkilef, S., Saidur, R., Orfi, J.: Simulation of unsteady heat and mass transport with heatline and massline in a partially heated open cavity. Appl. Math. Model. 39, 1597–1615 (2015)

    Google Scholar 

  • Rajarathinam, M., Nithyadevi, N., Chamkha, A.J.: Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Adv. Powder Technol. 29, 590–605 (2018)

    Google Scholar 

  • Razera, A.L., Fonseca, R.J.C., Isoldi, L.A., Santos, E.D., Rocha, L.A.O., Biserni, C.: Constructal design of a semi-elliptical fin inserted in a lid-driven square cavity with mixed convection. Int. J. Heat Mass Transf. 126, 81–94 (2018)

    Google Scholar 

  • Saleh, H., Hashim, I.: Conjugate natural convection in a porous enclosure with non-uniform heat generation. Transp. Porous Media 94(3), 759–774 (2012)

    Google Scholar 

  • Selimefendigil, F., Oztop, H.F.: Analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven with volumetric heat generation. Int. J. Mech. Sci. 118, 113–124 (2018)

    Google Scholar 

  • Selimefendigil, F., Oztop, H.F., Chamkha, A.J.: MHD mixed convection and entropy generation of nanofluid filled with driven cavity under the influence of inclined magnetic fields imposed to its upper and lower diagonal triangular domains. J. Magn. Magn. Mater. 406, 266–281 (2016)

    Google Scholar 

  • Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93–136 (2000)

    Google Scholar 

  • Sharif, M.A.R.: Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom. Appl. Therm. Eng. 27, 1036–1042 (2007)

    Google Scholar 

  • Shateri, A.R., Salahsour, B.: Comprehensive thermal performance of convection-radiation longitudinal porous fins with various profiles and multiple nonlinearities. Int. J. Mech. Sci. 136, 252–263 (2018)

    Google Scholar 

  • Sheikholeslami, M., Shehza, S.A., Abbasi, F.M., Li, Z.X.: Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput. Methods Appl. Mech. Eng. 338, 491–505 (2018)

    Google Scholar 

  • Sheikhzadeh, G.A., Qomi, M.E., Hajialigol, N., Fattahi, A.: Numerical study of mixed convection flows in a lid-driven enclosure filled with nanofluid using variable properties. Results Phys. 2, 5–13 (2002)

    Google Scholar 

  • Shi, X.D., Khodadadi, J.M.: Laminar fluid flow and heat transfer in a lid-driven cavity due to a thin fin. J. Heat Transfer 124, 1056–1063 (2002)

    Google Scholar 

  • Shi, X.D., Khodadadi, J.M.: Fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin: transient behavior. J. Heat Transfer 126, 924–930 (2004)

    Google Scholar 

  • Shi, X.D., Khodadadi, J.M.: Periodic state of fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin. Int. J. Heat Mass Transf. 48, 5323–5337 (2005)

    Google Scholar 

  • Siavashi, M., Yousofvand, R., Rezanijad, S.: Nanofluid and porous fins effects on natural convection and entropy generation of flow inside a cavity. Adv. Power Technol. 29, 142–156 (2018)

    Google Scholar 

  • Sivakumar, V., Sivasankaran, S., Prakash, P., Lee, J.H.: Effect of heating location and size on mixed convection in lid-driven cavities. Comput. Math Appl. 59, 3053–3065 (2010)

    Google Scholar 

  • Sivasankaran, S., Mansour, M.A., Bashad, A.M., Bhuvaneswari, M.: MHD mixed convection of Cu–water nanofluid in a two-sided lid-driven porous cavity with a partial slip. Numer. Heat Transf. A 70(12), 1356–1370 (2016)

    Google Scholar 

  • Sun, C.Z., Yu, B., Oztop, H.F., Wang, Y., Wei, J.J.: Control of mixed convection in lid-driven enclosures using conductive triangular fins. Int. J. Heat Mass Transf. 54, 894–909 (2011)

    Google Scholar 

  • Taklifi, A., Aghanajafi, C., Akrami, H.: The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp. Porous Media 85(1), 215–231 (2010)

    Google Scholar 

  • Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-side lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Google Scholar 

  • Uddin, M.B., Rahman, M.M., Khan, M.A.H., Ibrahim, T.A.: Effect of buoyancy ratio on unsteady thermosolutal combined convection in a lid driven trapezoidal enclosure in the presence of magnetic field. Comput. Fluids 114, 284–296 (2015)

    Google Scholar 

  • Umavathi, J.C., Kumar, J.P., Chamkha, A.J., Pop, J.: Mixed convection in a vertical porous channel. Transp. Porous Media 61(3), 315–335 (2005)

    Google Scholar 

  • Wang, L., Liu, R.Z., Liu, D., Zhao, F.Y., Wang, H.Q.: Thermal buoyancy driven flows inside a differentially heated enclosure with porous fins of multiple morphologies attached to the hot wall. Int. J. Therm. Sci. 147, 106138 (2020)

    Google Scholar 

  • Yang, D.Y., Xue, Z.Q., Mathias, S.A.: Analysis of momentum transfer in a lid-driven cavity containing a Brinkman–Forchheimer medium. Transp. Porous Media 92, 101–118 (2012)

    Google Scholar 

  • Yu, Q., Xu, H., Liao, S.J.: Analysis of mixed convection flow in an inclined lid-driven enclosure with Buongiorno’s nanofluid model. Int. J. Heat Mass Transf. 126, 221–236 (2018)

    Google Scholar 

  • Zhao, F.Y., Liu, D., Tang, G.F.: Conjugate heat transfer in square enclosures. Heat Mass Transf. 43, 907–922 (2007a)

    Google Scholar 

  • Zhao, F.Y., Liu, D., Tang, G.F.: Application issues of the streamline, heatline, and massline for conjugate heat and mass transfer. Int. J. Heat Mass Transf. 50, 320–334 (2007b)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Natural Science Foundation of China (NSFC Grant No. 51778504; Grant No. U1867221), National Key Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2018YFC0705201, Grant No. 2018YFB0904200), Joint Zhuzhou-Hunan Provincial Natural Science Foundation (Grant No. 2018JJ4064), Zhuzhou Public Welfare Program (Grant No. 50756), National Defense Research Funds for the Central Universities (Grant No. 2042018gf0031, Wuhan University), Beijing Institute of Satellite Environmental Engineering (CAST-BISEE2019-025), Teaching Research Program (Grant No. 2019JG030, Wuhan University) and Shandong Provincial Natural Science Foundation (Grant No. ZR2018MEE035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Yun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, WW., Cai, Y. et al. Effects of Porous Fins on Mixed Convection and Heat Transfer Mechanics in Lid-Driven Cavities: Full Numerical Modeling and Parametric Simulations. Transp Porous Med 132, 495–534 (2020). https://doi.org/10.1007/s11242-020-01402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01402-3

Keywords

Navigation