Skip to main content

Advertisement

Log in

Analysis and optimization of uniform FBG structure for sensing and communication applications

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A uniform fiber Bragg grating sensor is sketched and inspected by the finite-difference time-domain method in furtherance of obtaining ultimate transmission and reflection spectra by optimizing the FBG parameters like refractive index, grating height, grating width, wafer width, wafer length. The maximum transmission power spectrum is achieved as − 7 dB for the refractive index of 3.005, and the maximum reflection spectra are obtained as 6 dB for the grating height of 1 μm which is enhanced nine times than the precedent work. The proposed FBG is a simple, light-weight, low-cost uniform structure, and it offers high reflectivity and ease of handling. Therefore, it is highly useful in sensing and communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hill, K.O., Fujii, Y., Johnson, D.C., Kawasaki, B.S.: Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)

    Article  Google Scholar 

  2. Meltz, G., Morey, W.W., Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 823–825 (1989)

    Article  Google Scholar 

  3. Ding, W., Andrews, S.R., Birks, T.A., Maier, S.A.: Modal coupling in fiber tapers decorated with metallic surface gratings. Opt. Lett. 31(17), 2556–2558 (2006)

    Article  Google Scholar 

  4. Ding, W., Andrews, S.R., Maier, S.A.: Surface corrugation Bragg gratings on optical fiber tapers created via plasma etch postprocessing. Opt. Lett. 32(17), 2499–2501 (2007)

    Article  Google Scholar 

  5. Fang, X., Liao, C.R., Wang, D.N.: Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett. 35(7), 1007–1009 (2010)

    Article  Google Scholar 

  6. Ahmad, R., Baker, C., Rochette, M.: Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 36(15), 2886–2888 (2011)

    Article  Google Scholar 

  7. Liang, W., Huang, Y.Y., Xu, Y., Lee, R.K., Yariv, A.: Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86(15), 151122 (2005)

    Article  Google Scholar 

  8. Iadicicco, A., Cusano, A., Cutolo, A., Bernini, R., Giordano, M.: Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004)

    Article  Google Scholar 

  9. Zhang, Y., Lin, B., Tjin, S.C., Zhang, H., Wang, G.H., Shum, P., Zhang, X.L.: Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt. Express 18(25), 26345–26350 (2010)

    Article  Google Scholar 

  10. Chung, K.M., Liu, Z., Lu, C., Tam, H.Y.: Single reflective mode fiber Bragg grating in multimode microfiber. IEEE Photon. J. IEEE 4(2), 437–442 (2012)

    Article  Google Scholar 

  11. Ran, Y., Tan, Y.-N., Sun, L.-P., Gao, S., Li, J., Jin, L., Guan, B.-O.: 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt. Express 19(19), 18577–18583 (2011)

    Article  Google Scholar 

  12. Zhao, P., Li, Y.H., Zhang, J.H., Shi, L., Zhang, X.L.: Nanohole induced microfiber Bragg gratings. Opt. Express 20(27), 28625–28630 (2012)

    Article  Google Scholar 

  13. Nayak, K.P., Hakuta, K.: Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique. Opt. Express 21(2), 2480–2490 (2013)

    Article  Google Scholar 

  14. Ding, M., Zervas, M.N., Brambilla, G.: A compact broadband microfiber Bragg grating. Opt. Express 19(16), 15621–15626 (2011)

    Article  Google Scholar 

  15. Ding, M., Wang, P., Lee, T., Brambilla, G.: A microfiber cavity with minimal-volume confinement. Appl. Phys. Lett. 99(5), 051105 (2011)

    Article  Google Scholar 

  16. Kou, J.-L., Qiu, S.-J., Xu, F., Lu, Y.-Q., Yuan, Y., Zhao, G.: Miniaturized metal-dielectric-hybrid tapered fiber tip grating for refractive index sensing. IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011)

    Article  Google Scholar 

  17. Haines, D.E.: Determinants of lesion size during radiofrequency catheter ablation: the role of electrode-tissue contact pressure and duration of energy delivery. J. Cariovasc. Electrophysiol. 2, 509–515 (1991)

    Article  Google Scholar 

  18. Cowie, B.M., Webb, D.J., Tam, B., Slack, P., Brett, P.N.: Fibre Bragg grating sensors for distributive tactile sensing. Meas. Sci. Technol. (2007). https://doi.org/10.1088/0957-0233/18/1/017

    Article  Google Scholar 

  19. Saccomandi, P., Schena, E., Oddo, C.M., Zollo, L., Silvestri, S., Guglielmelli, E.: Microfabricated tactile sensors for biomedical applications: a review. Biosensors 4, 422–448 (2014)

    Article  Google Scholar 

  20. Rao, Y.J., Webb, D.J., Jackson, D.A., Zhang, L., Bennion, I.: Optical in-fiber Bragg grating sensor systems for medical applications. J. Biomed. Opt. 3, 38–44 (1998)

    Article  Google Scholar 

  21. Saccomandi, P., Schena, E., Caponero, M.A., di Matteo, F.M., Martino, M., Pandolfi, M., Silvestri, S.: Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans. Biomed. Eng. 59, 2958–2964 (2012)

    Article  Google Scholar 

  22. Al-Fakih, E., Abu Osman, N.A., Mahamd Adikan, F.R.: The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics. Sensors 12, 12890–12926 (2012)

    Article  Google Scholar 

  23. Tjin, S.C., Tan, Y.K., Yow, M., Lam, Y.Z., Hao, J.: Recording compliance of dental splint use in obstructive sleep apnoea patients by force and temperature modeling. Med. Biol. Eng. Comput. 39, 182–184 (2001)

    Article  Google Scholar 

  24. Allsop, T., Miller, M., Bennion, I., Carroll, K., Lloyd, G., Webb, D.J.: Application of long-period-grating sensors to respiratory plethysmography. J. Biomed. Opt. (2007). https://doi.org/10.1117/1.2821198

    Article  Google Scholar 

  25. Hao, J.Z., Tan, K.M., Tjin, S.C., Liaw, C.Y., Roy Chaudhuri, P., Cuo, X., Lu, C.: Design of a foot-pressure monitoring transducer for diabetic patients based on FBG sensors. In: Proceedings of the LEOS, the 16th Annual Meeting of the IEEE, Tucson, AZ, USA, 27–30 October 2003, pp. 23–24 (2003)

  26. Obaton, A.F., Laffont, G., Wang, C., Allard, A., Ferdinand, P.: Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing. Sens. Actuators A 189, 451–458 (2013)

    Article  Google Scholar 

  27. Guan, B.O., Li, J., Jin, L., Ran, Y.: Fiber Bragg gratings in optical microfibers. Opt. Fiber Technol. 19(6), 80–93 (2013)

    Article  Google Scholar 

  28. Yang, Y., Liu, X., Zhang, X., Jin, W., Yang, M.: A Gap FBG and its application in tunable narrow linewidth fibre laser. Opt. Laser Technol. 56, 114–118 (2014)

    Article  Google Scholar 

  29. Qu, S., Jin, T., Chi, H., Tong, G., Ren, F., Zha, X.: An optoelectronic oscillator using an FBG and an FBG-based Fabry–Perot filter. Opt. Commun. 342, 141–143 (2015)

    Article  Google Scholar 

  30. Li, X.-X., Ren, W.-X., Bi, K.-M.: FBG force-testing ring for bridge cable force monitoring and temperature compensation. Sens. Actuators A 223, 105–113 (2015)

    Article  Google Scholar 

  31. Yang, H.Z., Ali, M.M., Rajibul, M.: Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement. Sens. Actuators A 228, 62–68 (2015)

    Article  Google Scholar 

  32. Wang, J., Hu, B., Li, W., Song, G., Jiang, L., Liu, T.: Design and application of fiber Bragg grating (FBG) geophone for higher sensitivity and wider frequency range. Measurement 79, 228–235 (2016)

    Article  Google Scholar 

  33. You, R., Liang, R., Gangbing, S.: A novel fiber Bragg grating (FBG) soil strain sensor. Measurement 139, 85–91 (2019)

    Article  Google Scholar 

  34. Xu, L., Liu, N., Ge, J., Wang, X., Fok, M. P.: Stretchable fiber-Bragg-grating-based sensor. Opt. Lett. 43(11), 2503–2506 (2018)

    Article  Google Scholar 

  35. Zhang, W., Zhang, M., Lan, Y., Zhao, Y., Dai, W.: Detection of crack locations in aluminum alloy structures using FBG sensors. Sensors 20(2), 347 (2020)

    Article  Google Scholar 

  36. Cao, D., Fang, H., Wang, F., Zhu, H., Sun, M.: A fiber bragg-grating-based miniature sensor for the fast detection of soil moisture profiles in highway slopes and subgrades. Sensors 18(12), 4431 (2018)

    Article  Google Scholar 

  37. Hoffman, J., Waters, D. H., Khadka, S., Kumosa, M. S.: Shape sensing of polymer core composite electrical transmission lines using FBG sensors. IEEE Trans. Instrum. Meas. 69(1), 249–257 (2019)

    Article  Google Scholar 

  38. Qian, M., Yu, Y., Ren, N., Wang, J., Jin, X.: Sliding sensor using fiber Bragg grating for mechanical fingers. Opt. Exp. 26(1), 254–264 (2018)

    Article  Google Scholar 

  39. Shree, M. D., Sangeetha, A., Krishnan, P.: Design and analysis of FBG sensor for explosive detection applications. Plasmonics. (2019). https://doi.org/10.1007/s11468-019-01100-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabu Krishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya shree, M., Sangeetha, A. & Krishnan, P. Analysis and optimization of uniform FBG structure for sensing and communication applications. Photon Netw Commun 39, 223–231 (2020). https://doi.org/10.1007/s11107-020-00880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00880-1

Keywords

Navigation