Skip to main content
Log in

Photocatalytic activity of LiMgPO4 in the hydroquinone decomposition and related surface phenomena

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

We report a study which exhibits for the first time the catalytic activity of LiMgPO4 in the reaction of hydroquinone oxidation. The samples were synthesized by solid state reaction, glycerol-nitrate method and ultrasonic spray pyrolysis. It was proved that LiMgPO4 makes the hydroquinone decomposition possible in the absence of irradiation and accelerates it under the action of light. It was determined that the lager is the specific surface area of the catalyst, the higher is the reaction rate constant. The high catalytic activity of LiMgPO4 in the oxidation reaction was explained by the existence of defects on the LiMgPO4 surface able to adsorb ions, radicals, etc. The UV–vis spectra clearly indicated the existence of defects. The results of voltammetric and NMR studies confirmed that the defective surface of LiMgPO4 easily adsorbs molecular and ionic groups of different nature formed during sorption and electrolysis of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Santos A, Yustos P, Quintanilla A, Rodríguez S, García-Ocho F (2002) Route of the catalytic oxidation of phenol in aqueous phase. Appl Catal B 39:97–113

    Article  CAS  Google Scholar 

  2. Guerra R (2001) Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere 44:1737–1747

    Article  CAS  PubMed  Google Scholar 

  3. Fazullin DD, Mavrin GV, Melkonyan RG (2014) Removal of oil products and phenol from waste water by composite sorbents under dynamic conditions. Chem Technol Fuels Oils 50:88–94

    Article  CAS  Google Scholar 

  4. Liu Y, Cai Y, Yang G, Pang Y, Zhou Y, Zeng G, Tang L (2019) In: Tang L (ed) Nanohybrid and nanoporous materials for aquatic pollution control: micro nano technology. Elsevier, Inc., New York

    Google Scholar 

  5. Singh M, Singh J (2002) An enzymatic method for removal of phenol from industrial effluent. Prep Biochem Biotechnol 32:127–133

    Article  CAS  PubMed  Google Scholar 

  6. Prasannakumar BR, Regupathi I, Murugesan T (2009) An optimization study on microwave irradiated decomposition of phenol in the presence of H2O2. J Chem Technol Biotechnol 84:83–91

    Article  CAS  Google Scholar 

  7. Zhang J, Tang Y, Xie J-Q, Li J-Z, Zeng W, Hu C-W (2005) Study on phenol oxidation with H2O2 catalyzed by Schiff base manganese complexes as mimetic peroxidase. J Serb Chem Soc 70:1137–1146

    Article  CAS  Google Scholar 

  8. Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh AB (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J 73:143–160

    Article  CAS  Google Scholar 

  9. Cybulski A, Trawczyńsk J (2004) Wet air oxidation: a review of process technologies and aspects in reactor design. Appl Catal B 4:1–13

    Article  CAS  Google Scholar 

  10. Quintanilla A, Casas JA, Zazo JA, Mohedano AF, Rodríguez JJ (2006) Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Appl Catal B 62:115–120

    Article  CAS  Google Scholar 

  11. Shen S, Chang Z, Liu CH (2006) Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater. Sep Purif Technol 49:217–222

    Article  CAS  Google Scholar 

  12. Zhu K, Liu C, Ye X, Wu Y (1998) Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (I) phenol hydroxylation. Appl Catal A 168:365–372

    Article  CAS  Google Scholar 

  13. Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke W-D, Sprenger GA, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu SF, Plietker B, Laschat S (2013) Selective catalytic oxidation of C-H bonds with molecular oxygen. ChemCatChem 5:81–112

    Article  CAS  Google Scholar 

  14. Christoskova SG, Stoyanova M, Georgieva M (2001) Low-temperature iron-modified cobalt oxide system: Part 2. catalytic oxidation of phenol in aqueous phase. Appl Catal A 208:243–249

    Article  CAS  Google Scholar 

  15. Abecassis-Wolfovich M, Jothiramalingam R, Landau MV, Herskowitz M, Viswanathan B, Varadarajan TK (2005) Cerium incorporated ordered manganese oxide OMS-2 materials: improved catalysts for wet oxidation of phenol compounds. Appl Catal B 59:91–98

    Article  CAS  Google Scholar 

  16. Christoskova St, Stoyanova M (2001) Degradation of phenolic waste waters over Ni-oxide. Water Res 35:2073–2077

    Article  CAS  PubMed  Google Scholar 

  17. Maugans CB, Akgerman A (2003) Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst. Water Res 37:319–328

    Article  CAS  PubMed  Google Scholar 

  18. Li YB, Trush MA (1993) Oxidation of hydroquinone by copper: chemical mechanism and biological effects. Arch Biochem Biophys 300:346–355

    Article  CAS  PubMed  Google Scholar 

  19. Piresa MS, Nogueira FGE, Torres JA, Lacerda LCT, Corrêa S, Pereira MC, Ramalho TC (2016) Experimental and theoretical study on the reactivity of maghemite doped with Cu2+ in oxidation reactions: structural and thermodynamic properties towards a Fenton catalyst. RSC Adv 6:80830–80839

    Article  CAS  Google Scholar 

  20. Hu S, Li W, Finkle H, Liu X (2020) A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv Colloid Interface Sci 276:102102

    Article  CAS  PubMed  Google Scholar 

  21. Lacerda LCT, Piresa MS, Corrêa S, Oliveira LCA, Ramalho TC (2016) Oxidative dehydration reaction of glycerol into acrylic acid: a first-principles prediction of structural and thermodynamic parameters of a bifunctional catalyst. Chem Phys Lett 651:161–167

    Article  CAS  Google Scholar 

  22. Bhatkhande DS, Pangarkar VG, Beenackers ACM (2001) Solar-assisted photochemical and photocatalytic degradation of phenol. J Chem Technol Biotechnol 77:102–116

    Article  CAS  Google Scholar 

  23. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660

    Article  CAS  Google Scholar 

  24. Khalid NR, Majid A, Tahir MB, Niaz NA, Khalid S (2017) Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram Int 43:14552–14571

    Article  CAS  Google Scholar 

  25. Szczepanik B (2017) Photocatalytic degradation of organic contaminants over clay–TiO2 nanocomposites: a review. Appl Clay Sci 141:227–239

    Article  CAS  Google Scholar 

  26. Hanic F, Handlović M, Burdova K, Majling J (1982) Crystal structure of lithium magnesium phosphate, LiMgPO4: crystal chemistry of the olivine-type compounds. J Crystallogr Spectrosc Res 12:99–127

    Article  CAS  Google Scholar 

  27. Thomas D, Abhilash P, Sebastian MT (2013) Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J Eur Ceram Soc 33:87–93

    Article  CAS  Google Scholar 

  28. Gai M, Chen Z, Fan Y, Yan S-Y, Xie Y-X, Wang J, Zhang Y (2015) Synthesis of LiMgPO4:Eu, Sm, B phosphors and investigation of their optically stimulated luminescence properties. Radiat Meas 78:48–52

    Article  CAS  Google Scholar 

  29. Marczewska B, Bilski P, Wrobel D, Kłosowski M (2016) Investigations of OSL properties of LiMgPO4:Tb, B based dosimeters. Radiat Meas 90:265–268

    Article  CAS  Google Scholar 

  30. Bajaj NS, Palan CB, Koparkar KA, Kulkarni MS, Omanwar SK (2016) Preliminary results on effect of boron co-doping on CW-OSL and TL properties of LiMgPO4:Tb, B. J Lumin 175:9–15

    Article  CAS  Google Scholar 

  31. Menon SN, Gundu Rao TK, Koul DK, Watanabe S (2018) TL–ESR correlation studies in LiMgPO4:Tb, B phosphor. Radiat Eff Defects Solids 173:210–222

    Article  CAS  Google Scholar 

  32. Gieszczyk W, Kulig D, Bilski P, Marczewska B, Kłosowski M (2017) Analysis of TL and OSL kinetics in lithium magnesium phosphate crystals. Radiat Meas 106:100–106

    Article  CAS  Google Scholar 

  33. Aramendía MA, Borau V, Jiménez C, Marinas JM, Romero FJ (1996) Gas-phase oxidation of alcohols over alkali-magnesium orthophosphates. J Colloid Interface Sci 179:290–297

    Article  Google Scholar 

  34. Massiot D, Fayon F, Capron M, King I, Le Calve S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76

    Article  CAS  Google Scholar 

  35. Vyatkina OV, Pershina ED, Aleksashkin IV, Botnar OS (2009) Adsorption and catalytic component of the oxidation processes of phenol-containing natural water. Uchenye zapiski Tavricheskogo Natsionalnogo Universiteta im. V. I. Vernadskogo. Series «Biology, chemistry» 22: 145–153

  36. Santos A, Yustos P, Cordero T, Gomis S, Rodríguez S, García-Ocho F (2005) Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization. Catal Today 102–103:213–218

    Article  CAS  Google Scholar 

  37. Eftaxias A, Fonta J, Fortuny A, Giralt J, Fabregat A, Stüber F (2001) Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing. Appl Catal B 33:175–190

    Article  CAS  Google Scholar 

  38. Roig B, Gonzalez C, Thomas O (2003) Monitoring of phenol photodegradation by ultraviolet spectroscopy. Spectrochim Acta A 59:303–307

    Article  CAS  Google Scholar 

  39. Kubelka P, Munk F (1931) An article on optics of paint layers. Z Tech Phys 12:593–603

    Google Scholar 

  40. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637

    Article  CAS  Google Scholar 

  41. Kellerman DG, Medvedeva NI, Kalinkin MO, Syurdo AI, Zubkov VG (2018) Theoretical and experimental evidences of defects in LiMgPO4. J Alloys Compd 766:626–636

    Article  CAS  Google Scholar 

  42. Kalinkin MO, Abashev RM, Zabolotskaya EV, Baklanova IV, Surdo AI, Kellerman DG (2019) Paramagnetic surface defects in LiMgPO4. Mater Res Express 6:046206

    Article  CAS  Google Scholar 

  43. Medvedeva NI, Kellerman DG, Kalinkin MO (2019) Ab initio simulation of oxygen vacancies in LiMgPO4. Mater Res Express 6:106304

    Article  CAS  Google Scholar 

  44. Farrell BL, Igenegbai VO, Linic S (2016) A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal 6:340–4346

    Article  CAS  Google Scholar 

  45. Yuliati L, Yoshida H (2008) Photocatalytic conversion of methane. Chem Soc Rev 37:1592–1602

    Article  CAS  PubMed  Google Scholar 

  46. Peng XD, Richards D, Stair PC (1990) Surface composition and reactivity of lithium-doped magnesium oxide catalysts for oxidative coupling of methane. J Catal 121:99–109

    Article  CAS  Google Scholar 

  47. Wu M-C, Truong CM, Coulter K, Goodman DW (1993) Investigations of active sites for methane activation in the oxidative coupling reaction over pure and Li-promoted MgO catalysts. J Catal 140:344–352

    Article  CAS  Google Scholar 

  48. Pan C, Zhu Y (2010) New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ Sci Technol 44:5570–5574

    Article  CAS  PubMed  Google Scholar 

  49. Piscopo A, Robert D, Weber JV (2001) Comparison between the reactivity of commercial and synthetic TiO2 photocatalysts. J Photochem Photobiol A 139:253–256

    Article  CAS  Google Scholar 

  50. Gnanamoorthy G, Muthamizh S, Sureshbabu K, Munusamy S, Padmanaban A, Kaaviya A, Nagarajan R, Stephen A, Narayanan V (2018) Photocatalytic properties of amine functionalized Bi2Sn2O7/rGO nanocomposites. J Phys Chem Solids 118:21–31

    Article  CAS  Google Scholar 

  51. Hoare JP (1968) The electrochemistry of oxygen. Wiley, New York

    Google Scholar 

  52. Gorokhovskaya VI, Gorokhovskii VM (1983) Practical handbook on electrochemical methods of analysis. Vyssh.Shkola, Moscow (in Russian)

    Google Scholar 

  53. Šljukić B, Banks CE, Compton RG (2005) An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. J Iran Chem Soc 2:1–25

    Article  Google Scholar 

  54. Morcos I, Yeager E (1970) Kinetic studies of the oxygen-peroxide couple on pyrolytic graphite. Electrochim Acta 15:953–975

    Article  CAS  Google Scholar 

  55. Xu J, Huang W, McCreery RL (1996) Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. J Electroanal Chem 410:1235–1242

    Article  Google Scholar 

  56. Boccuzzi F, Borello E, Zecchina A, Bossi SA, Camia M (1978) Infrared study of ZnO surface properties: I. Hydrogen and deuterium chemisorption at room temperature. J Catal 51:150–159

    Article  CAS  Google Scholar 

  57. Ardizzone S, Bianchi CL, Fadoni M, Vercell B (1997) Magnesium salts and oxide: an XPS overview. Appl Surf Sci 119:253–259

    Article  CAS  Google Scholar 

  58. Gopel W, Rocker G, Feierabend R (1983) Intrinsic defects of TiO2 (110): interaction with chemisorbed O2, H2, CO, and CO2. Phys Rev 28:3427–3439

    Article  CAS  Google Scholar 

  59. Dent AL, Kokes RJ (1969) Hydrogenation of ethylene by zinc oxide. I. Role of slow hydrogen chemisorption. J Phys Chem 73:3772–3780

    Article  CAS  Google Scholar 

  60. Vogel W, Lundquist J, Ross P, Stonehart P (1975) Reaction pathways and poisons—II: the rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim Acta 20:79–93

    Article  CAS  Google Scholar 

  61. Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47:3571–3594

    Article  CAS  Google Scholar 

  62. Gill L, Beste A, Chen B, Li M, Mann AKP, Overbury SH, Hagaman EW (2017) Fast MAS 1H NMR study of water adsorption and dissociation on the (100) surface of ceria nanocubes: a fully hydroxylated, hydrophobic ceria surface. J Phys Chem C 12:7450–7465

    Article  CAS  Google Scholar 

  63. Song Y, Chong Y, Raghavan A, Xing Y, Ling Y, Kleinhammes A, Wu Y (2017) Nucleation and growth process of water adsorption in micropores of activated carbon revealed by NMR. J Phys Chem C 121:8504–8509

    Article  CAS  Google Scholar 

  64. Parrino F, Conte P, De Pasquale C, Laudicina VA, Loddo V, Palmisano L (2017) Influence of adsorbed water on the activation energy of model photocatalytic reactions. J Phys Chem C 12:2258–2267

    Article  CAS  Google Scholar 

  65. Arunachalam V, Vasudevan S (2018) Understanding aqueous dispersibility of boron nitride nanosheets from 1H solid state NMR and reactive molecular dynamics. J Phys Chem C 12:4662–4669

    Article  CAS  Google Scholar 

  66. Mastikhin VM, Mudrakovsky IL, Nosov AV (1991) 1H NMR magic angle spinning (MAS) studies of heterogeneous catalysis. Prog Nucl Magn Reson Spectrosc 23:259–299

    Article  CAS  Google Scholar 

  67. Nosaka AY, Nosaka Y (2005) Characteristics of water adsorbed on TiO2 photocatalytic surfaces as studied by 1H NMR spectroscopy. Bull Chem Soc Jpn 78:1595–1607

    Article  CAS  Google Scholar 

  68. Nosaka AY, Fujiwara T, Yagi H, Akutsu H, Nosaka Y (2004) Characteristics of water adsorbed on TiO2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR spectroscopy. J Phys Chem B 108:9121–9125

    Article  CAS  Google Scholar 

  69. Chizallet C, Costentin G, Lauron-Pernot H, Maquet J, Che M (2006) 1H MAS NMR study of the coordination of hydroxyl groups generated upon adsorption of H2O and CD3OH on clean MgO surfaces. Appl Catal A 307:239–244

    Article  CAS  Google Scholar 

  70. Chizallet C, Petitjean H, Costentin G, Lauron-Pernot H, Maquet J, Bonhomme C, Che M (2009) Identification of the OH groups responsible for kinetic basicity on MgO surfaces by 1H MAS NMR. J Catal 268:175–179

    Article  CAS  Google Scholar 

  71. Kraus H, Prins R (1996) Proton NMR investigations of surface hydroxyl groups on oxidic Mo–P/γ-Al2O3 catalysts. J Catal 164:260–267

    Article  CAS  Google Scholar 

  72. Soria J, Sanz J, Sobrados I, Coronado JM, Hernández-Alonso MD, Fresno F (2010) A 27Al MQMAS and off-resonance nutation NMR investigation of Mo−P/γ-Al2O3 hydrotreating catalyst precursors. J Phys Chem C 114:16534–16540

    Article  CAS  Google Scholar 

  73. Wagner GW, Peterson GW, Mahle JJ (2012) Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: the development of self-decontaminating paints. Ind Eng Chem Res 51:3598–3603

    Article  CAS  Google Scholar 

  74. Molinari M, Parker SC, Sayle DC, Islam MS (2012) Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria. J Phys Chem C 116:7073–7082

    Article  CAS  Google Scholar 

  75. Fronzi M, Piccinin S, Delley B, Traversa E, Stampf C (2009) Water adsorption on the stoichiometric and reduced CeO2 (111) surface: a first-principles investigation. Phys Chem Chem Phys 11:9188–9199

    Article  CAS  PubMed  Google Scholar 

  76. Kumar S, Schelling PK (2006) Density functional theory study of water adsorption at reduced and stoichiometric ceria (111) surfaces. J Chem Phys 125:204704

    Article  CAS  PubMed  Google Scholar 

  77. Fernández-Torre D, Kosḿider K, Carrasco J, Ganduglia-Pirovano MV, Pérez R (2012) Insight into the adsorption of water on the clean CeO2 (111) surface with van der Waals and hybrid density functionals. J Phys Chem C 116:13584–13593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant No. 18-08-00093-a) and AAAA-A19-119031890025-9 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Kalinkin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinkin, M.O., Yanchenko, M.Y., Buldakova, L.Y. et al. Photocatalytic activity of LiMgPO4 in the hydroquinone decomposition and related surface phenomena. Reac Kinet Mech Cat 129, 1061–1076 (2020). https://doi.org/10.1007/s11144-020-01754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01754-3

Keywords

Navigation