Skip to main content
Log in

Evaluating Nanoparticles Decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in Adsorption of Ciprofloxacin from Aqueous Environments

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The aim of this study is synthesize of Fe3O4@SiO2-Schiff base nanocomposite (Fe3O4@SiO2-APTMS-HBA) as a new and effective adsorbent in the removal of CIP antibiotic from aqueous medium. Field emission scanning electron microscope (FESEM) with energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) analyses were used to investigate the morphological, structural, and magnetic properties of Fe3O4@SiO2-APTMS-HBA. The parameters affecting the adsorption process including, initial pH solution, adsorbent concentration, CIP concentration and contact time were investigated. The maximum removal was achieved with 96% efficiency under optimum process conditions, including pH 7, contact time = 5 min, CIP concentration = 10 mg/L, and adsorbent concentration 50 mg/L. In the isotherms and kinetic studies of the adsorption process, the results showed that the adsorption process followed the pseudo-quadratic kinetic model and Freundlich isotherm. The maximum adsorption capacity (qm) was obtained as 415.3 mg/g. Fe3O4@SiO2-APTMS-HBA had advantages such as fast pollutant adsorption power, easy magnetic separation from aqueous solutions by the magnet, and reusability in several stages without changes in the magnetic property. Therefore, Fe3O4@SiO2-APTMS-HBA nanocomposite can be used in the removal of recalcitrant pollutants such as CIP antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.T. Danalioglu, O. Kerkez Kuyumcu, M. Abdel Salam, S.S. Bayazit, Chitosan grafted SiO2-Fe3O4 nanoparticles for removal of antibiotics from water. Environ. Sci. Pollut. Res. Int. 25, 36661–36670 (2018)

  2. M. Malakootian, K. Kannan, M.A. Gharaghani, A. Dehdarirad, A. Nasiri, Y.D. Shahamat, H. Mahdizadeh, Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. J. Environ. Chem. Eng. 7, 103457 (2019)

    Article  CAS  Google Scholar 

  3. M. Malakootian, Z. Darabi-Fard, N. Amirmahani, A. Nasiri, Evaluation of arsenic, copper, lead, cadmium, and iron concentration in drinking water resources of central and Southern Bardsir Plain, Iran, in 2014. J. Kerman Univ. Med. Sci. 22, 542–554 (2015)

    Google Scholar 

  4. T. Damstra, S. Barlow, A. Bergman, R. Kavlock, G. Van Der Kraak, Global assessment of the state-of-the-science of endocrine disruptors (World Health Organization, Geneva, 2002), pp. 11–32

    Google Scholar 

  5. S.T. Danalıoğlu, Ş.S. Bayazit, Ö. Kerkez, B.G. Alhogbi, M. Abdel Salam, Removal of ciprofloxacin from aqueous solution using humic acid- and levulinic acid- coated Fe3O4 nanoparticles, Chem. Eng. Res. Des. 123, 259–267 (2017)

    Article  Google Scholar 

  6. H. Mahdizadeh, M. Malakootian, Optimization of ciprofloxacin removal from aqueous solutions by a novel semi-fluid Fe/charcoal micro-electrolysis reactor using response surface methodology. Process Saf. Environ. Prot. 123, 299–308 (2019)

    Article  CAS  Google Scholar 

  7. M. Malakootian, A. Nasiri, H. Mahdizadeh, Preparation of CoFe2O4/activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Sci. Technol. 78, 2158–2170 (2018)

    Article  CAS  Google Scholar 

  8. L. Lan, X. Kong, H. Sun, C. Li, D. Liu, High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. J. Environ. Manage. 231, 439–445 (2019)

    Article  CAS  Google Scholar 

  9. M.Z. Afzal, X.F. Sun, J. Liu, C. Song, S.G. Wang, A. Javed, Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci. Total Environ. 639, 560–569 (2018)

    Article  CAS  Google Scholar 

  10. E. Cao, W. Duan, A. Wang, Y. Zheng, Oriented growth of poly(m-phenylenediamine) on Calotropis gigantea fiber for rapid adsorption of ciprofloxacin. Chemosphere 171, 223–230 (2017)

    Article  CAS  Google Scholar 

  11. M.T. Do, D.C. Stuckey, Fate and removal of Ciprofloxacin in an anaerobic membrane bioreactor (AnMBR). Bioresource Technol. 289, 121683 (2019)

  12. S. Ganesan, M. Amirthalingam, P. Arivalagan, S. Govindan, S. Palanisamy, A.P. Lingassamy, V.K. Ponnusamy, Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique. J. Environ. Manage. 245, 409–417 (2019)

    Article  CAS  Google Scholar 

  13. A. Raja, P. Rajasekaran, K. Selvakumar, M. Arunpandian, K. Kaviyarasu, S.A. Bahadur, M. Swaminathan, Visible active reduced graphene oxide-BiVO4-ZnO ternary photocatalyst for efficient removal of ciprofloxacin. Sep. Purif. Technol. 233, 115996 (2020)

    Article  CAS  Google Scholar 

  14. S. M, R. Ch Venkata, R.R. Kakarla, N.P. Shetti, R. M S, V.R. Anjanapura, Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater. Res. Exp. 6, 125502 (2019)

  15. K.V. Karthik, C.V. Reddy, K.R. Reddy, R. Ravishankar, G. Sanjeev, R.V. Kulkarni, N.P. Shetti, A.V. Raghu, Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J. Mater. Sci.: Mater. Electron. 30, 20646–20653 (2019)

    CAS  Google Scholar 

  16. X. Zhu, S. Sun, Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives, in Nanophotocatalysis and Environmental Applications : Energy Conversion and Chemical Transformations, ed. by Inamuddin, M.I. Ahamed, A.M. Asiri, E. Lichtfouse (Springer, Cham, 2019), pp. 67–102

    Chapter  Google Scholar 

  17. M.I. Ahamed, A.M. Asiri, E. Lichtfouse, Nanophotocatalysis and Environmental Applications (Springer, Cham, 2019).

    Google Scholar 

  18. X. Mi, M. Yang, L. Xie, Y. Li, Y. Sun, S. Zhan, RGO/MoS2/Ce0.75Zr0.25O2 electro-Fenton cathode with higher matching and complementarity for efficient degradation of ciprofloxacin, Catal. Today, 339, 371–378 (2020)

    Article  CAS  Google Scholar 

  19. A. Konwar, A. Gogoi, D. Chowdhury, Magnetic alginate–Fe3O4 hydrogel fiber capable of ciprofloxacin hydrochloride adsorption/separation in aqueous solution. RSC Adv. 5, 81573–81582 (2015)

    Article  CAS  Google Scholar 

  20. N. Amirmahani, N.O. Mahmoodi, M. Mohammadi Galangash, A. Ghavidast, Advances in nanomicelles for sustained drug delivery. J. Ind. Eng. Chem. 55, 21–34 (2017)

  21. N.O. Mahmoodi, A. Ghavidast, N. Amirmahani, A comparative study on the nanoparticles for improved drug delivery systems. J. Photochem. Photobiol. B 162, 681–693 (2016)

    Article  CAS  Google Scholar 

  22. R.S. Aliabadi, N.O. Mahmoodi, Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes; sunset yellow and Congo red. J. Clean. Prod. 179, 235–245 (2018)

    Article  CAS  Google Scholar 

  23. D. Elhamifar, P. Mofatehnia, M. Faal, Magnetic nanoparticles supported Schiff-base/copper complex: an efficient nanocatalyst for preparation of biologically active 3,4-dihydropyrimidinones. J. Colloid Interface Sci. 504, 268–275 (2017)

    Article  CAS  Google Scholar 

  24. T.M. Berhane, J. Levy, M.P.S. Krekeler, N.D. Danielson, Adsorption of bisphenol A and ciprofloxacin by palygorskite-montmorillonite: effect of granule size, solution chemistry and temperature. Appl. Clay Sci. 132–133, 518–527 (2016)

    Article  Google Scholar 

  25. Y. Fei, Y. Li, S. Han, J. Ma, Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci. 484, 196–204 (2016)

    Article  CAS  Google Scholar 

  26. A. Belalia, A. Zehhaf, A. Benyoucef, Preparation of hybrid material based of PANI with SiO2 and its adsorption of phenol from aqueous solution. Polym. Sci. Ser. B 60, 816–824 (2018)

    Article  CAS  Google Scholar 

  27. A. Zehhaf, A. Benyoucef, R. Berenguer, C. Quijada, S. Taleb, E. Morallon, Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. J. Therm. Anal. Calorim. 110, 1069–1077 (2012)

    Article  CAS  Google Scholar 

  28. M. Mekhloufi, A. Zehhaf, A. Benyoucef, C. Quijada, E. Morallon, Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites. Environ. Monit. Assess. 185, 10365–10375 (2013)

    Article  CAS  Google Scholar 

  29. F. Wang, L. Zhang, Y. Wang, X. Liu, S. Rohani, J. Lu, Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II). Appl. Surf. Sci. 420, 970–981 (2017)

    Article  CAS  Google Scholar 

  30. K. Karthik, M. Shashank, V. Revathi, T. Tatarchuk, Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol. Cryst. Liq. Cryst. 673, 70–80 (2018)

    Article  CAS  Google Scholar 

  31. A. Khosravi, Z. Honarmand rad, N. Amirmahani, A. Nasiri, M. Malakootian, The application of electrolysis method to disinfect water contaminated by Salmonella and Shigella. J. Water Chem. Technol. 41, 182–187 (2019)

  32. K. Kannan, D. Sivasubramanian, P. Seetharaman, S. Sivaperumal, Structural and biological properties with enhanced photocatalytic behaviour of CdO-MgO nanocomposite by microwave-assisted method. Optik 204, 164221 (2020)

    Article  CAS  Google Scholar 

  33. D.P. Suhas, H.M. Jeong, T.M. Aminabhavi, A.V. Raghu, Preparation and characterization of novel polyurethanes containing 4,4′-{oxy-1,4-diphenyl bis(nitromethylidine)}diphenol schiff base diol. Polym. Eng. Sci. 54, 24–32 (2014)

    Article  CAS  Google Scholar 

  34. A.V. Raghu, G.S. Gadaginamath, H.M. Jeong, N.T. Mathew, S.B. Halligudi, T.M. Aminabhavi, Synthesis and characterization of novel Schiff base polyurethanes. J. Appl. Polym. Sci. 113, 2747–2754 (2009)

    Article  CAS  Google Scholar 

  35. J. Yang, S. Li, Y. Gong, C. He, Q. Zhang, J. Wu, W. Liao, D. Shu, S. Tian, Preferential catalytic ozonation of p-nitrophenol by molecularly imprinted Fe3O4/SiO2 core-shell magnetic composites. Water Sci. Technol. 69, 170–176 (2014)

    Article  CAS  Google Scholar 

  36. S.T. Danalıoğlu, Ş.S. Bayazit, Ö. Kerkez Kuyumcu, M.A. Salam, Efficient removal of antibiotics by a novel magnetic adsorbent: magnetic activated carbon/chitosan (MACC) nanocomposite. J. Mol. Liq. 240, 589–596 (2017)

  37. H. Mao, S. Wang, J.Y. Lin, Z. Wang, J. Ren, Modification of a magnetic carbon composite for ciprofloxacin adsorption. J. Environ. Sci. (China) 49, 179–188 (2016)

    Article  CAS  Google Scholar 

  38. M.Y. Nassar, I.S. Ahmed, M.A. Raya, A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J. Mol. Liq. 282, 251–263 (2019)

    Article  CAS  Google Scholar 

  39. M. Abbasi, Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal. J. Clean. Prod. 145, 105–113 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express appreciation to University of Guilan, Faculty Research Committee for its support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosrat O. Mahmoodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirmahani, N., Mahdizadeh, H., Malakootian, M. et al. Evaluating Nanoparticles Decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in Adsorption of Ciprofloxacin from Aqueous Environments. J Inorg Organomet Polym 30, 3540–3551 (2020). https://doi.org/10.1007/s10904-020-01499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01499-5

Keywords

Navigation