Skip to main content
Log in

Guayule natural rubber composites: impact of fillers on their cure characteristics, dynamic and mechanical behavior

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Guayule natural rubber (GNR) is an alternative resource of Hevea natural rubber (HNR) with 99.9% cis content in its 1,4-polyisoprene chemical backbone. In this study, compounds were formulated independently with four different reinforcing fillers such as carbon black (HAF), precipitated silica (VN3), fume silica (FUM) and nanofly ash (NFA) for the advancement of GNR based products. The cure characteristic, dynamic-mechanical performance and mechanical properties of GNR composite were studied with the reinforcing effect of different fillers on GNR. The cure characteristic results demonstrated that HAF and FUM silica filled compounds had more processing safety than VN3 and NFA filled compounds. Viscoelastic parameters of the vulcanizates were studied by dynamic mechanical analysis to estimate the glass transition characteristics and dynamic behavior. The higher storage modulus of FUM silica vulcanizate was an indication of superior filler reinforcing nature and improved rolling resistance than other filled systems. Additionally, HRTEM analysis also proved the better filler dispersion ability of FUM silica in GNR matrix. The mechanical properties were studied with a variation of each filler loading of 8, 16, and 32 phr in GNR vulcanizates. The tensile strength of each filled system increased with an increase of filler content from 8 to 32 phr. In comparison, FUM silica GNR vulcanizates exhibited better mechanical properties, therefore, it was considered as a better structure-performance composite than those of HAF, VN3 and NFA filled composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thomas S, Ranimol S (2010) Rubber nanocomposites: preparation, properties, and applications. Wiley, Hoboken

    Book  Google Scholar 

  2. Boonstra BB (1979) Role of particulate fillers in elastomer reinforcement: a review. Polymer 20:691–704

    Article  CAS  Google Scholar 

  3. Sengupta RS, Chakraborty S, Bandyopadhyay A, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47:1956–1974

    Article  CAS  Google Scholar 

  4. Sienkiewicz M, Helena J, Kaja B-L, Justyna K-L (2017) Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. J Clean Prod 147:560–571

    Article  CAS  Google Scholar 

  5. Fukahori Y (2005) New progress in the theory and model of carbon black reinforcement of elastomers. J Appl Polym Sci 95:60–67

    Article  CAS  Google Scholar 

  6. Li X, Li Z, Xia Y (2015) Test and calculation of the carbon black reinforcement effect on the hyper-elastic properties of tire rubbers. Rubber Chem Technol 88:98–116

    Article  CAS  Google Scholar 

  7. Koga T, Takenaka M, Aizawa K, Nakamura M, Hashimoto T (2005) Structure factors of dispersible units of carbon black filler in rubbers. Langmuir 21:11409–11413

    Article  CAS  PubMed  Google Scholar 

  8. Mouri H, Keizo A (1999) Improved tire wet traction through the use of mineral fillers. Rubber Chem Technol 72:960–968

    Article  CAS  Google Scholar 

  9. Joshi PG, Antonio C, Lesley H, Michael S, Martin H, Louis MP (2008) Silica-rubber mixtures having improved hardness. US Patent 7,432,321

  10. Soo-Jin P, Ki-Sook C (2003) Filler–elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J Colloid Interface Sci 267:86–91

    Article  CAS  Google Scholar 

  11. Ten Brinke JW, Debnath SC, Louis AEMR, Jacobus WMN (2003) Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos Sci Technol 63:1165–1174

    Article  CAS  Google Scholar 

  12. Sombatsompop N, Thongsang S, Markpin T, Wimolmala E (2004) Fly ash particles and precipitated silica as fillers in rubbers. I. Untreated fillers in natural rubber and styrene–butadiene rubber compounds. J Appl Polym Sci 93:2119–2130

    Article  CAS  Google Scholar 

  13. Sombatsompop N, Wimolmala E, Markpin T (2007) Fly-ash particles and precipitated silica as fillers in rubbers. II. Effects of silica content and Si69 treatment in natural rubber/styrene-butadiene rubber vulcanizates. J Appl Polym Sci 104:3396–3405

    Article  CAS  Google Scholar 

  14. Alkadasi NA, Hundiwale D, Kapadi U (2004) Effect of coupling agent on the mechanical properties of fly ash–filled polybutadiene rubber. J Appl Polym Sci 91:1322–1328

    Article  CAS  Google Scholar 

  15. Paul KT, Satpathy SK, Manna I, Chakraborty KK, Nando GB (2007) Preparation and characterization of nano structured materials from fly ash: a waste from thermal power stations, by high energy ball milling. Nanoscale Res Lett 2:397–404

    Article  CAS  PubMed Central  Google Scholar 

  16. Paul KT, Pabi SK, Chakraborty KK, Nando GB (2009) Nanostructured fly ash–styrene butadiene rubber hybrid nanocomposites. Polym Compos 30:1647–1656

    Article  CAS  Google Scholar 

  17. Saowapark T, Narongrit S, Chakrit S (2009) Viscoelastic properties of fly ash-filled natural rubber compounds: effect of fly ash loading. J Appl Polym Sci 112:2552–2558

    Article  CAS  Google Scholar 

  18. Kohjiya S (2014) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, Sawston

    Google Scholar 

  19. Nor HM, John RE (1998) Telechelic liquid natural rubber: a review. Prog Polym Sci 23:143–177

    Article  CAS  Google Scholar 

  20. Santana MH, Brabander MD, García S, Zwaag SVD (2018) Routes to make natural rubber heal: a review. Polym Rev 58:585–609

    Article  CAS  Google Scholar 

  21. Rasutis D, Kullapa S, Colleen M, Amy EL (2015) A sustainability review of domestic rubber from the guayule plant. Ind Crops Prod 70:383–394

    Article  CAS  Google Scholar 

  22. Sarkar P, Bhowmick AK (2018) Sustainable rubbers and rubber additives. J Appl Polym Sci 135:45701–45734

    Article  CAS  Google Scholar 

  23. Ikeda Y, Junkong P, Ohashi T, Phakkeeree T, Sakaki Y, Tohsan A, Kohjiyad S, Cornish K (2016) Strain-induced crystallization behaviour of natural rubbers from guayule and rubber dandelion revealed by simultaneous time-resolved WAXD/tensile measurements: indispensable function for sustainable resources. RSC Adv 6:95601–95610

    Article  CAS  Google Scholar 

  24. Thuong TT, Yamamoto NO, Nghia PT, Cornish K, Kawahara S (2017) Effect of naturally occurring crosslinking junctions on green strength of natural rubber. Polym Adv Technol 28:303–311

    Article  CAS  Google Scholar 

  25. Cornish K, Siler DJ (1996) Hypoallergenic guayule latex: research to commercialization. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria

    Google Scholar 

  26. Barrera CS, Cornish K (2016) High performance waste-derived filler/carbon black reinforced guayule natural rubber composites rubber. Ind Crops Prod 86:132–142

    Article  CAS  Google Scholar 

  27. Barrera CS, Cornish K (2015) Novel mineral and organic materials from agro-industrial residues as fillers for natural rubber. J Polym Environ 23:437–448

    Article  CAS  Google Scholar 

  28. Ren X, Cornish K (2019) Eggshell improves dynamic properties of durable guayule rubber composites co-reinforced with silanized silica. Ind Crops Prod 138:111440–111407

    Article  CAS  Google Scholar 

  29. Ren X, Geng Y, Soboyejo ABO, Cornish K (2019) Reinforced mechanical properties of functionalized silica and eggshell filled guayule natural rubber composites. Rubber Chem Technol 92:687–708

    Article  CAS  Google Scholar 

  30. Winkler D, Schostarez H, Stephens H (1977) Guayule rubber: vulcanization properties of gum and filled stocks. Rubber Chem Technol 50:981–987

    Article  CAS  Google Scholar 

  31. Porter L, Stephens H (1979) Effects of compounding variations on the properties of guayule rubber. Rubber Chem Technol 52:361–376

    Article  CAS  Google Scholar 

  32. Dhanania S, Mahata D, Prabhavale O, Cornish K, Nando GB, Chattopadhyay S (2018) Phosphorylated cardanol prepolymer grafted guayule natural rubber: an advantageous green natural rubber. Iran Polym J 27:307–318

    Article  CAS  Google Scholar 

  33. Prabhavale O, Mahata D, Nando GB (2019) Phosphorylated cardanol prepolymer grafted carboxylated styrene-butadiene rubber for better processing with enhancing silica filler dispersion. J Appl Polym Sci 136:47528–47537

    Article  CAS  Google Scholar 

  34. Formela K, Wa-sowicz D, Formela M, Hejna A, Haponiuk J (2015) Curing characteristics, mechanical and thermal properties of reclaimed ground tire rubber cured with various vulcanizing systems. Iran Polym J 24:289–297

    Article  CAS  Google Scholar 

  35. Zhang H, Li Y, Shou JQ, Zhang ZY, Zhao GZ, Liu YQ (2015) Effect of curing temperature on properties of semi-efficient vulcanized natural rubber. J Elastom Plast 48:331–339

    Article  CAS  Google Scholar 

  36. Mohapatra S, Alex R, Nando GB (2016) Cardanol grafted natural rubber: a green substitute to natural rubber for enhancing silica filler dispersion. J Appl Polym Sci 133:43057

    Article  CAS  Google Scholar 

  37. Milani G, Leroy E, Milani F, Deterre R (2013) Mechanistic modeling of reversion phenomenon in sulphur cured natural rubber vulcanization kinetics. Polym Test 32:1052–1063

    Article  CAS  Google Scholar 

  38. Kraus G (1965) Interactions of elastomers and reinforcing fillers. Rubber Chem Technol 38:1070–1114

    Article  CAS  Google Scholar 

  39. Kohls DJ, Beaucage G (2002) Rational design of reinforced rubber. Curr Opin Solid State Mater Sci 6:183–194

    Article  CAS  Google Scholar 

  40. Zafarmehrabian R, Gangali ST, Ghoreishy MHR, Davallu M (2012) The effects of silica/carbon black ratio on the dynamic properties of the tread compounds in truck tires. Eur J Chem 9:1102–1112

    CAS  Google Scholar 

  41. Bachtrong P, Nguyenthanh L, Phamthi H (2017) Effect of fly ash from thermal power plant on the dielectric properties of polymer composites materials based on matrix epoxy Der 331. Chem Eng Trans 56:1205–1211

    Google Scholar 

  42. Saowapark T, Sombatsompop N, Sirisinha C (2009) Viscoelastic properties of fly ash filled natural rubber compounds: effect of fly ash loading. J Appl Polym Sci 112:2552–2558

    Article  CAS  Google Scholar 

  43. Thongsang S, Sombatsompop N (2006) Effect of NaOH and Si69 treatments on the properties of fly ash/natural rubber composites. Polym Compos 27:30–40

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, D., Sarkar, K., Mondal, P. et al. Guayule natural rubber composites: impact of fillers on their cure characteristics, dynamic and mechanical behavior. Iran Polym J 29, 393–401 (2020). https://doi.org/10.1007/s13726-020-00803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00803-x

Keywords

Navigation