Skip to main content
Log in

Chemical durability and structure of Al2O3–Ag2O–P2O5 glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Glasses in the xAl2O3·(40 − x)Ag2O·60P2O5 system were prepared using melt quenching rout, where x varies between 0 and 20 mol%. Scanning electron microscopy indicates that the addition of Al2O3 has changed the morphology of the samples under investigation. The density of the glasses and the corresponding molar volume are both decreased linearly with increasing content of Al2O3. The dissolution rates (Dr) of the studied glasses were determined using weight loss method. Dr has showed a strong decreasing trend (from ~ 10−4 to ~ 10−9) upon increasing Al2O3 content. By increasing the concentration of Al2O3, the chemical durability of the investigated glasses is increased. Decreasing the weight loss was interpreted in terms of increasing concentration of P–O–Al bonds in the glasses investigated. The activation energy for ionic conduction showed an increasing behavior with increasing Al2O3 contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Wilder Jr., J. Non-Cryst. Solids 38, 879 (1980)

    Article  ADS  Google Scholar 

  2. R.K. Brow, J. Non-Cryst. Solids 263, 1 (2000)

    Article  ADS  Google Scholar 

  3. L. Zhang, R.K. Brow, J. Am. Ceram. Soc. 94, 3123 (2011)

    Article  Google Scholar 

  4. B. Sales, L. Boatner, J. Ramey, J. Non-Cryst. Solids 263, 155 (2000)

    Article  ADS  Google Scholar 

  5. B.M.G. Melo, M.P.F. Graça, P.R. Prezas, M.A. Valente, A.F. Almeida, F.N.A. Freire, L. Bih, J. Non-Cryst. Solids 434, 28 (2016)

    Article  ADS  Google Scholar 

  6. S.F. Khor, Z.A. Talib, W.M.M. Yunus, Ceram. Intern. 38, 935 (2012)

    Article  Google Scholar 

  7. L. Baiaa, D. Muresan, M. Baiaa, J. Popp, S. Simon, Vib. Spectrosc 43, 313 (2007)

    Article  Google Scholar 

  8. M. Lu, F. Wang, K. Chen, Y. Dai, Q. Liao, H. Zhu, Spect. Acta A 148, 1 (2015)

    Article  ADS  Google Scholar 

  9. A. Maaroufi, O. Oabi, G. Pinto, M. Ouchetto, R. Benavente, J.M. Pereña, J. Non-Cryst. Solids 358, 2764 (2012)

    Article  ADS  Google Scholar 

  10. J. Holubová, Z. Černošek, E. Černošková, L. Beneš, J. Therm. Anal. Calorim. 122, 47 (2015)

    Article  Google Scholar 

  11. M.L. Marek Liška, A. Plško, M. Chromčíková, T. Gavenda, J. Macháček, J. Therm. Anal. Calorim. 121, 85 (2015)

    Article  Google Scholar 

  12. J.H. Yang, H.S. Park, Y.Z. Cho, J. Nuclear Sci. Technol. 54, 1330 (2017)

    Article  Google Scholar 

  13. P. Singh, S.S. Das, S.A. Agnihotry, J. Non-Cryst. Solids 351, 3730 (2005)

    Article  ADS  Google Scholar 

  14. A. Faivre, D. Viviani, J. Phalippou, Solid State Ion. 176, 325 (2005)

    Article  Google Scholar 

  15. J. Cui, H. Wen, S. Xie, W. Song, M. Sun, Yu Lin, Z. Hao, Mater. Res. Bull. 103, 70 (2018)

    Article  Google Scholar 

  16. M. Saad, W. Stambouli, S.A. Mohamed, H. Elhouichet, J Alloys Compd. 705, 550 (2017)

    Article  Google Scholar 

  17. J.L. Shaw, A.C. Wright, R.N. Sinclair, G.K. Marasinghe, D. Holland, M.R. Lees, C.R. Scales, J. Non-Cryst. Solids 345, 245 (2004)

    Article  ADS  Google Scholar 

  18. H. Akamatsu, K. Fujita, S. Murai, K. Tanaka, Appl. Phys. Lett. 92, 251908 (2008)

    Article  ADS  Google Scholar 

  19. L. Abbas, L. Bih, A. Nadiri, Y. El Amraoui, D. Mezzane, B. Elouadi, J. Mol. Struct. 876, 194 (2008)

    Article  ADS  Google Scholar 

  20. C. Angell, Solid State Ion. 18, 72 (1986)

    Article  ADS  Google Scholar 

  21. K. Hariharan, J. Maier, Solid State Ion. 86, 503 (1996)

    Google Scholar 

  22. K. Shaju, S. Chandra, Phys. Status Solid (B) 181, 301 (1994)

    Article  ADS  Google Scholar 

  23. S.S. Das, B.P. Baranwal, C.P. Gupta, P. Singh, J. Power Sour. 114, 346 (2003)

    Article  ADS  Google Scholar 

  24. R.I. Ainsworth, J.K. Christie, N.H. de Leeuw, Phys. Chem. Chem. Phys. 16, 21135 (2014)

    Article  Google Scholar 

  25. S.P. Valappil, S.P. Valappil, D.M. Pickup, D.L. Carroll, C.K. Hope, J. Pratten, R.J. Newport, M.E. Smith, M. Wilson, J.C. Knowles, Antimicrob. Agen. Chemother. 51, 4453 (2007)

    Article  Google Scholar 

  26. J. Swenson, A. Matic, C. Gejke, L. Börjesson, W.S. Howells, and M. J. Capitan Phys. Rev. B 60, 12023 (1999)

    Article  ADS  Google Scholar 

  27. A.K. Varshneya, M. Tomozawa. J. Non-Cryst. Solids 170, 112 (1994)

    Article  Google Scholar 

  28. E. Metwalli, R.K. Brow, J. Non-Cryst. Solids 289, 113 (2001)

    Article  ADS  Google Scholar 

  29. S. Aqdim, A. Albizane, J. Greneche, J. Environ. Sci. Comput. Sci. Eng. Technol. 4, 509 (2015)

    Google Scholar 

  30. G. El-Damrawi, A.K. Hassan, A. Shahboub, Mag. Reson. Solids 20, 18202 (2018)

    Google Scholar 

  31. J. Egan, R. Wenslow, K. Mueller, J. Non-Cryst. Solids 261, 115 (2000)

    Article  ADS  Google Scholar 

  32. L. Zhang, H. Eckert, J. Phys. Chem. B 110, 8946 (2006)

    Article  Google Scholar 

  33. M. Karabulut, E. Metwalli, R.K. Brow, J. Non-Cryst. Solids 283, 211 (2001)

    Article  ADS  Google Scholar 

  34. G. El-Damrawi, A.K. Hassan, H. Doweidar, A. Shahboub, New J. Glas. Ceram. 7, 77 (2017)

    Article  Google Scholar 

  35. K.M. Shaju, S. Chandra, Phys. Stat. Sol. (B) 181, 301 (1994)

    Article  ADS  Google Scholar 

  36. M.D. Ingram, M.A. Mackenzie, W. Müller, M. Torge, Solid State Ion. 28, 677 (1988)

    Article  Google Scholar 

  37. D.E. Day, Z. Wu, C.S. Ray, P. Hrma, J. Non-Cryst. Solids 241, 1 (1998)

    Article  ADS  Google Scholar 

  38. H. Gao, T. Tan, D. Wang, J. Cont. Rel. 96, 29 (2004)

    Article  Google Scholar 

  39. S.T. Reis, M. Karabulut, D.E. Day, J. Non-Cryst. Solids 292, 150 (2001)

    Article  ADS  Google Scholar 

  40. G. Perera, R.H. Doremus, W. Lanford, J. Am. Ceram. Soc. 74, 1269 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their grateful thanks to Asst. Prof. Ph.D. Eng. Dumitru CHIRLESAN, Rector of UPIT, Romania, for his kind help and encouragement which he extended to us throughout the period of this study. Further, the authors are highly indebted to Dr. Catalin Ducu head of (CRC&D-Auto), UPIT, Romania, and his colleagues for giving us the opportunity to do research and providing invaluable guidance throughout this research.

Author information

Authors and Affiliations

Authors

Contributions

GED was involved in conceptualization, supervision, writing—review and editing. AKH contributed to writing—review and editing. AS was involved in methodology, validation, investigation, writing—original draft, visualization.

Corresponding author

Correspondence to A. Shahboub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Damrawi, G., Hassan, A.K. & Shahboub, A. Chemical durability and structure of Al2O3–Ag2O–P2O5 glasses. Appl. Phys. A 126, 271 (2020). https://doi.org/10.1007/s00339-020-3451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3451-6

Keywords

Navigation