Skip to main content
Log in

Substituent effects on novel diaminovinylidenes by DFT

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Electronic and steric effects on singlet and triplet symmetric 2,4-diX-vinylidenes with acyclic, cyclic-saturated, and cyclic-unsaturated structures are compared and contrasted with their corresponding asymmetric 2,5-diX-vinylidenes, at B3LYP/6-311++G** level of theory (X = H, Me, i-Pr, t-Bu, NH2, OH, OMe, SH, Ph, CN, and CF3). From 64 novel vinylidenes scrutinized, 45 are singlet while the other 19 show triplet ground state. These are suggested by the conductor like polarizable continuum model on both gas-phase and solvent-phase optimized structures. Regardless of X, band gap decreases in going from acyclic to cyclic-saturated and cyclic-unsaturated structures. More importantly nucleophilicity decreases with the same trend for symmetric carbenes. The proton affinity decreases in going from acyclic to cyclic-unsaturated and to cyclic-saturated structures for both symmetric and asymmetric carbenes. Atoms in molecules wavefunction analysis show internal hydrogen bondings for 1s-Me, 1s-i-Pr, 1s-t-Bu, 1s-Ph, 1′s-CF3, 2s-OH, 2′s-t-Bu, and 2′s-OMe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.J. Stang, Chem. Rev. 78, 383 (1978)

    Article  CAS  Google Scholar 

  2. W. Kirmse, Carbene Chemistry, 2nd edn. (Academic, New York, 1971)

    Google Scholar 

  3. R.A. Moss, Carbenes, vol. I/II (Wiley, New York, 1975)

    Google Scholar 

  4. C. Wentrup, Reactive Molecules (Wiley, New York, 1984)

    Google Scholar 

  5. M.P. Doyle, D.C. Forbes, Chem. Rev. 98, 911 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. R.S. Grainger, K.R. Munro, Tetrahedron 71, 7795 (2015)

    Article  CAS  Google Scholar 

  7. M.D. Su, C.C. Chuang, Theor. Chem. Acc. 132, 1360 (2013)

    Article  CAS  Google Scholar 

  8. W.P. Leung, Y.C. Chan, C.W. So, Organometallics 3411, 2067 (2015)

    Article  CAS  Google Scholar 

  9. C. McKay, in Carbenes, vol. 2, ed. by R.A. Moss, M. Jones Jr. (Wiley-Interscience, New York, 1975)

    Google Scholar 

  10. A.L. Sobolewski, W. Domcke, J. Phys. Chem. A 106, 4158 (2002)

    Article  CAS  Google Scholar 

  11. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  CAS  Google Scholar 

  12. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. L.R. Domingo, E. Chamorro, P. Perez, J. Org. Chem. 73, 4615 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. R.G. Pearson, J. Org. Chem. 54, 1423 (1989)

    Article  CAS  Google Scholar 

  15. R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

  16. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  CAS  Google Scholar 

  17. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  18. C. Barrientos-Salcedo, B. Espinoza, C. Soriano-Correa, J. Mol. Struct. 1173, 92 (2018)

    Article  CAS  Google Scholar 

  19. P. George, M. Trachtman, C.W. Bock, A.M. Brett, J. Chem. Soc. Perkin Trans. 2, 1222 (1976)

    Article  Google Scholar 

  20. H. Szatylowicz, A. Jezuita, K. Ejsmont, T.M. Krygowski, J. Phys. Chem. A 121, 5196 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. O. Exner, S. Bohm, Curr. Org. Chem. 10, 763 (2006)

    Article  CAS  Google Scholar 

  22. L. Campos-Fernadez, New J. Chem. 43, 11125 (2019)

    Article  Google Scholar 

  23. C. Soriano-Correa, J. Mol, Graph. Model. 81, 116 (2018)

    Article  CAS  Google Scholar 

  24. R. Tonner, G. Heydenrych, G. Frenking, Chem. Phys. Chem. 9, 1474 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. N. Khorshidvand, M.Z. Kassaee, J. Phys. Org. Chem. 32, 3996 (2019)

    Article  CAS  Google Scholar 

  26. M.Z. Kassaee, N. Khorshidvand, A.A. Ahmadi, P.T. Cummings, J. Phys. Org. Chem. 32, 3898 (2019)

    Article  CAS  Google Scholar 

  27. A.E. Reed, F. Weinhold, J. Chem. Phys. 83, 1736 (1985)

    Article  CAS  Google Scholar 

  28. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

    Article  CAS  Google Scholar 

  29. A.E. Reed, L.A. Curtis, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  CAS  Google Scholar 

  30. E. Scrocco, J. Tomasi, J. Comput. Chem. 42, 95 (1973)

    CAS  Google Scholar 

  31. P. Popelier, P.L.A. Popelier, Atoms in Molecules: An Introduction (Prentice Hall, Upper Saddle River, 2000)

    Book  Google Scholar 

  32. R.F.W. Bader, Chem. Rev. 91, 893 (1991)

    Article  CAS  Google Scholar 

  33. F.B. Konig, J. Schonbohm, Chemical Advice by R.F.W. Bader, McMaster University, Hamilton, Canada, AIM2000, Version 2.0, Copyright (2002)

  34. M. Schmidt am Busch, E.W. Knapp, Chem. Phys. Chem. 5, 1513 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. V. Barone, M. Cossi, N. Rega, G. Scalmani, J. Comput. Chem. 24, 669 (2003)

    Article  PubMed  CAS  Google Scholar 

  36. B. Mennucci, J. Phys. Chem. Lett. 1, 1666 (2010)

    Article  CAS  Google Scholar 

  37. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. D.J. Nelson, S.P. Nolan, Chem. Soc. Rev. 42, 6723 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. C.A. Tolman, Chem. Rev. 77, 313 (1977)

    Article  CAS  Google Scholar 

  40. S. Seshadri, Int. J. S. Res. Sci. Eng. Tech. 4, 190 (2018)

    Google Scholar 

  41. D. Munz, Organometallics 37, 275 (2018)

    Article  CAS  Google Scholar 

  42. L. Falivene, L. Cavallo, Coord. Chem. Rev. 344, 101 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Tarbiat Modares University (TMU). Helpful suggestions and cooperation are appreciated from Kaveh Rockyzadeh and Kianoosh Rockyzadeh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Zaman Kassaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidvand, N., Kassaee, M.Z. & Safaei, S. Substituent effects on novel diaminovinylidenes by DFT. Res Chem Intermed 46, 2289–2308 (2020). https://doi.org/10.1007/s11164-020-04092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04092-0

Keywords

Navigation