Skip to main content
Log in

Augmentation of Biogranules for Enhanced Performance of Full-Scale Lagoon-Based Municipal Wastewater Treatment Plants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the treatment performance of lagoon-based municipal wastewater treatment plants (LWWTPs) inoculated by proprietary biogranules. Augmentation process included enhancing the microbial community of lagoon basins by weekly addition of biogranules over the treatment seasons (summer and fall). Effluent qualities before and after the augmentation process were compared, and the results were reported as “enhanced treatment efficiencies, EE”. Very low concentrations of 5-day biochemical oxygen demand (BOD5), total nitrogen (TN), total Kjeldahl nitrogen (TKN), ammonium nitrogen (N-NH4), and total phosphorus (TP) were detected at discharge points after the augmentation process, which corresponded to enhanced treatment efficiencies of 86, 74, 72, 92.7, and 71%, respectively. Significant reduction in total coliform and E. coli concentrations in the effluents (91 and 98%, respectively) demonstrated the capability of granule-based lagoons in destroying pathogens. Adding biogranules to lagoons was an efficient remedy for excess sludge buildup in short and long runs. Hence, inoculating lagoon plants using biogranules was suggested as an effective technique to augment rural wastewater treatment facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EGMs:

Bio-enhanced granular microorganisms

References

  1. Federation of Canadian Municipalities and National Research Council (2004) Optimization of lagoon operation: A best practice by the national guide to sustainable municipal infrastructure. Available from: https://www.fcm.ca/Documents/reports/Infraguide/Optimization_of_Lagoon_Operations_EN.pdf. Accessed June 2017.

  2. Li, X., Zheng, W., & Kelly, W. R. (2013). Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons. Sci Total Environ, 445–446, 22–28. https://doi.org/10.1016/j.scitotenv.2012.12.035.

    Article  CAS  PubMed  Google Scholar 

  3. United States Environmental Protection Agency (U. S. EPA) (2011) Principles of design and operations of wastewater treatment pond systems for plant operators, engineers, and managers. Illinois Environmental Protection Agency, US. Available from: https://www.epa.gov. Accessed June 2017.

  4. Alcántara, C., Muñoz, R., Norvill, Z., Plouviez, M., & Guieysse, B. (2015). Nitrous oxide emissions from high rate algal ponds treating domestic wastewater. Bioresource Technology, 177, 110–117. https://doi.org/10.1016/j.biortech.2014.10.134.

    Article  CAS  PubMed  Google Scholar 

  5. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025.

    Article  CAS  Google Scholar 

  6. Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. Ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144(3), 967–975. https://doi.org/10.1016/j.envpol.2006.01.046.

    Article  CAS  PubMed  Google Scholar 

  7. Vanotti, M. B., Millner, P. D., Hunt, P. G., & Ellison, A. Q. (2005). Removal of pathogen and indicator microorganisms from liquid swine manure in multi-step biological and chemical treatment. Bioresource Technology, 96(2), 209–214. https://doi.org/10.1016/j.biortech.2004.05.010.

    Article  CAS  PubMed  Google Scholar 

  8. Conkle, J. L., White, J. R., & Metcalfe, C. D. (2008). Reduction of pharmaceutically active compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana. Chemosphere, 73(11), 1741–1748. https://doi.org/10.1016/j.chemosphere.2008.09.020.

    Article  CAS  PubMed  Google Scholar 

  9. Hoque, M. E., Cloutier, F., Arcieri, C., McInnes, M., Sultana, T., Murray, C., Vanrolleghem, P. A., & Metcalfe, C. D. (2014). Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon. Science of the Total Environment, 487, 801–812. https://doi.org/10.1016/j.scitotenv.2013.12.063.

    Article  CAS  PubMed  Google Scholar 

  10. Karim, M. R., Manshadi, F. D., Karpiscak, M. M., & Gerba, C. P. (2004). The persistence and removal of enteric pathogens in constructed wetlands. Water Research, 38(7), 1831–1837.

    Article  CAS  Google Scholar 

  11. Fridrich, B., Krčmar, D., Dalmacija, B., Molnar, J., Pešić, V., Kragulj, M., & Varga, N. (2014). Impact of wastewater from pig farm lagoons on the quality of local groundwater. Agricultural Water Management, 135, 40–53. https://doi.org/10.1016/j.agwat.2013.12.014.

    Article  Google Scholar 

  12. Schneiter, R., Middlebrooks, E. J., & Sletten, R. S. (1983). Cold region wastewater lagoon sludge accumulation. Water Research, 17(9), 1201–1206. https://doi.org/10.1016/0043-1354(83)90062-3.

    Article  CAS  Google Scholar 

  13. Wu, W., Hu, J., Gu, X., Zhao, Y., Zhang, H., & Gu, G. (1987). Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed. Water Research, 21(7), 789–799. https://doi.org/10.1016/0043-1354(87)90154-0.

    Article  CAS  Google Scholar 

  14. Adav, S. S., Lee, D. J., & Ren, N. Q. (2007). Biodegradation of pyridine using aerobic granules in the presence of phenol. Water Research, 41(13), 2903–2910. https://doi.org/10.1016/j.watres.2007.03.038.

    Article  CAS  PubMed  Google Scholar 

  15. Ho, K. L., Chen, Y. Y., Lin, B., & Lee, D. J. (2010). Egrading high-strength phenol using aerobic granular sludge. Applied Microbiology and Biotechnology, 85(6), 2009–2015. https://doi.org/10.1007/s00253-009-2321-0.

    Article  CAS  PubMed  Google Scholar 

  16. Cassidy, D. P., & Belia, E. (2005). Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research, 39(19), 4817–4823. https://doi.org/10.1016/j.watres.2005.09.025.

    Article  CAS  PubMed  Google Scholar 

  17. Val del Río, A., Figueroa, M., Arrojo, B., Mosquera-Corral, A., Campos, J. L., García-Torriello, G., & Méndez, R. (2012). Aerobic granular SBR systems applied to the treatment of industrial effluents. Journal of Environmental Management, 95(Suppl), S88–S92. https://doi.org/10.1016/j.jenvman.2011.03.019.

    Article  CAS  PubMed  Google Scholar 

  18. Beun, J. J., van Loosdrecht, M. C. M., & Heijnen, J. J. (2002). Aerobic granulation in a sequencing batch airlift reactor. Water Research, 36(3), 702–712. https://doi.org/10.1016/S0043-1354(01)00250-0.

    Article  CAS  PubMed  Google Scholar 

  19. de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90(6), 761–769. https://doi.org/10.1002/bit.20470.

    Article  CAS  PubMed  Google Scholar 

  20. Lv, Y., Wan, C., Liu, X., Zhang, Y., Lee, D. J., & Tay, J. H. (2013). Drying and re-cultivation of aerobic granules. Bioresource Technology, 129, 700–703. https://doi.org/10.1016/j.biortech.2012.12.178.

    Article  CAS  PubMed  Google Scholar 

  21. Lv, Y., Wan, C., Liu, X., Zhang, Y., Lee, D.-J., & Tay, J. H. (2013). Freezing of aerobic granules for storage and subsequent recovery. Journal of the Taiwan Institute of Chemical Engineers, 44(5), 770–773. https://doi.org/10.1016/j.jtice.2013.01.012.

    Article  CAS  Google Scholar 

  22. Gao, D., Yuan, X., & Liang, H. (2012). Reactivation performance of aerobic granules under different storage strategies. Water Research, 46(10), 3315–3322. https://doi.org/10.1016/j.watres.2012.03.045.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X., Zhang, H., Yang, F., Wang, Y., & Gao, M. (2008). Long-term storage and subsequent reactivation of aerobic granules. Bioresource Technology, 99(17), 8304–8309. https://doi.org/10.1016/j.biortech.2008.03.024.

    Article  CAS  PubMed  Google Scholar 

  24. Pishgar, R., Hamza, R. A., & Tay, J. H. (2017). Augmenting lagoon process using reactivated freeze-dried biogranules. Applied Biochemistry and Biotechnology, 183(1), 137–154. https://doi.org/10.1007/s12010-017-2435-2.

    Article  CAS  PubMed  Google Scholar 

  25. The Water Regulations (2002) Chapter E-10.21 reg 1 (effective December 5, 2002) As amended by Saskatchewan regulations 15/2007. Aailable from: http://www.saskh2o.ca/DWBinder/Water_Regs_e10-21r1.pdf. Accessed June 2017.

  26. Metcalf & Eddy. (2014). Wastewater engineering: Treatment and resource recovery (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  27. Zhou, D., Liu, M., Gao, L., Shao, C., & Yu, J. (2013). Calcium accumulation characterization in the aerobic granules cultivated in a continuous-flow airlift bioreactor. Biotechnology Letters, 35(6), 871–877. https://doi.org/10.1007/s10529-013-1157-y.

    Article  CAS  PubMed  Google Scholar 

  28. American Public Health Association (APHA)/American Water Works Association (AWWA)/Water Environment Federation (WEF) (2012) Standard methods for the examination of water and wastewater, 22nd ed., Washington, DC.

  29. Oleszkiewicz, J. A., & Sparling, A. B. (1987). Wastewater lagoons in a cold climate. Water Science and Technology, 19(12), 47–53. https://doi.org/10.2166/wst.1987.0125.

    Article  CAS  Google Scholar 

  30. Prince, D. S., Smith, D. W., ASCE, F., & Stanley, S. J. (1995). Intermittent-discharge lagoons for use in cold regions. Journal of Cold Regions Engineering, 9(4), 183–194.

    Article  Google Scholar 

  31. Ragush, C. M., Schmidt, J. J., Krkosek, W. H., Gagnon, G. A., Truelstrup-Hansen, L., & Jamieson, R. C. (2015). Performance of municipal waste stabilization ponds in the Canadian Arctic. Ecological Engineering, 83, 413–421. https://doi.org/10.1016/j.ecoleng.2015.07.008.

    Article  Google Scholar 

  32. Canada Minister of Justice (2016) Wastewater Systems Effluent Regulations (SOR/2012-139). Available from: https://laws-lois.justice.gc.ca/eng/regulations/sor-2012-139/fulltext.html. Accessed June 2017.

  33. United States Environmental Protection Agency (US EPA) (2010) Nutrient Control Design Manual - EPA/600/R-10/100. Available from http://www.epa.gov/nrmrl/pubs/600r10100.html. Accessed June 2017.

  34. United States Environmental Protection Agency (US EPA) (1975) Wastewater treatment ponds (EPA 430/9–74-001). Available from: https://nepis.epa.gov/Exe/. Accessed June 2017.

  35. Cameron, K., Madramootoo, C., Crolla, A., & Kinsley, C. (2003). Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland. Water Research, 37(12), 2803–2812. https://doi.org/10.1016/S0043-1354(03)00135-0.

    Article  CAS  PubMed  Google Scholar 

  36. García, J., Green, B. F., Lundquist, T., Mujeriego, R., Hernández-Mariné, M., & Oswald, W. J. (2006). Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresource Technology, 97(14), 1709–1715. https://doi.org/10.1016/j.biortech.2005.07.019.

    Article  CAS  PubMed  Google Scholar 

  37. de Kreuk, M. K., & van Loosdrecht, M. C. M. (2006). Formation of aerobic granules with domestic sewage. Journal of Environmental Engineering, 132(6), 694–697. https://doi.org/10.1002/bit.20470.

    Article  CAS  Google Scholar 

  38. Yang, Y., Zhou, D., Xu, Z., Li, A., Gao, H., & Hou, D. (2014). Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms. Applied Microbiology and Biotechnology, 98(12), 5737–5745. https://doi.org/10.1007/s00253-014-5637-3.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, D., Liu, M., Wang, J., Dong, S., Cui, N., & Gao, L. (2013). Granulation of activated sludge in a continuous flow airlift reactor by strong drag force. Biotechnology and Bioprocess Engineering, 18(2), 289–299. https://doi.org/10.1007/s12257-012-0513-4.

    Article  CAS  Google Scholar 

  40. Yi, S., Zhuang, W.-Q., Wu, B., Tay, S. T. L., & Tay, J. H. (2006). Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environmental Science & Technology, 40(7), 2396–2401. https://doi.org/10.1021/es0517771.

    Article  CAS  Google Scholar 

  41. Lin, Y. M., Liu, Y., & Tay, J. H. (2003). Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Applied Microbiology and Biotechnology, 62(4), 430–435. https://doi.org/10.1007/s00253-003-1359-7.

    Article  CAS  PubMed  Google Scholar 

  42. United States Environmental Protection Agency (US EPA) (2004) National Pollutant Discharge Elimination System (NPDES) Permit Application Requirement for Storm Water Discharges (EPA-833-K-10-001). Available from: https://www3.epa.gov. Accessed June 2017.

  43. Do, P., Amatya, P. L., & Keller, W. E. (2005). Successful implementation of biological nutrient removal at the 500 ML/d Bonnybrook wastewater treatment plant. In Proceedings of the Canadian Design Engineering Network (CDEN) Conference. Kaninaskis, Alberta. https://doi.org/10.24908/pceea.v0i0.3893.

  44. Ducey, T. F., Shriner, A. D., & Hunt, P. G. (2011). Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons. Journal of Environmental Quality, 40(2), 610–619. https://doi.org/10.2134/jeq2010.0387.

    Article  CAS  PubMed  Google Scholar 

  45. Ducey, T. F., & Hunt, P. G. (2013). Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing. Anaerobe, 21, 50–57. https://doi.org/10.1016/j.anaerobe.2013.03.005.

    Article  CAS  PubMed  Google Scholar 

  46. Li, Y., Liu, Y., Shen, L., & Chen, F. (2008). DO diffusion profile in aerobic granule and its microbiological implications. Enzyme and Microbial Technology, 43(4–5), 349–354. https://doi.org/10.1016/j.enzmictec.2008.04.005.

    Article  CAS  Google Scholar 

  47. Mosquera-Corral, A., de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. (2005). Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research, 39(12), 2676–2686. https://doi.org/10.1016/j.watres.2005.04.065.

    Article  CAS  PubMed  Google Scholar 

  48. Rittmann, B. E., & Langeland, W. E. (1985). Simultaneous denitrification with nitrification in single-channel oxidation ditches. Journal of the Water Pollution Control Federation, 57(4), 300–308 https://www.jstor.org/stable/25042591.

    CAS  Google Scholar 

  49. Surampalli, R. Y., Banerji, S. K., Tyagi, R. D., & Yang, P. Y. (2007). Integrated advanced natural wastewater treatment system for small communities. Water Science and Technology, 55(11), 239–243. https://doi.org/10.2166/wst.2007.371.

    Article  CAS  PubMed  Google Scholar 

  50. Baskaran, K., & Farago, L. (2007). Nitrogen removal in a two-stage, re-circulating waste stabilisation pond system. Water Science and Technology, 55(11), 57–63. https://doi.org/10.2166/wst.2007.335.

    Article  CAS  PubMed  Google Scholar 

  51. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., & Srinath, E. G. (1976). Inhibition of nitrification by ammonia and nitrous acid compounds. Journal of the Water Pollution Control Federation, 48(5), 835–852.

    CAS  PubMed  Google Scholar 

  52. Muñoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40(15), 2799–2815. https://doi.org/10.1016/j.watres.2006.06.011.

    Article  CAS  PubMed  Google Scholar 

  53. Arogo, J., Westerman, P. W., & Liang, Z. S. (2003). Comparing ammonium ion dissociation constant in swine anaerobic lagoon liquid and deionized water. Transactions of ASAE, 46(5), 1415–1419.

    Article  CAS  Google Scholar 

  54. Ro, K. S., Szogi, A. A., Vanotti, M. B., & Stone, K. C. (2008). Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and gas bubbling. Transactions of ASAE, 51(1), 259–270. https://doi.org/10.13031/2013.24219.

    Article  CAS  Google Scholar 

  55. Muga, H. E., & Mihelcic, J. R. (2008). Sustainability of wastewater treatment technologies. Journal of Environmental Management, 88(3), 437–447. https://doi.org/10.1016/j.jenvman.2007.03.008.

    Article  CAS  PubMed  Google Scholar 

  56. Hill, V. R., & Sobsey, M. D. (2003). Performance of swine waste lagoons for removing Salmonella and enteric microbial indicators. Transactions of ASAE, 46(3), 781–788. https://doi.org/10.13031/2013.13593.

    Article  Google Scholar 

  57. Al-Omari, A., & Fayyad, M. (2003). Treatment of domestic wastewater by subsurface flow constructed wetlands in Jordan. Desalination, 155(1), 27–39. https://doi.org/10.1016/S0011-9164(03)00236-4.

    Article  CAS  Google Scholar 

  58. Parmar, N., Singh, A., & Ward, O. P. (2001). Characterization of the combined effects of enzyme, pH and temperature treatments for removal of pathogens from sewage sludge. World Journal of Microbiology and Biotechnology, 17, 169–172. https://doi.org/10.1023/A:1016606020993.

    Article  CAS  Google Scholar 

  59. United States Environmental Protection Agency (US EPA) (2013) The Code of Federal Regulations: National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule. Available from: https://www.federalregister.gov/. Accessed June 2017.

  60. Comacho, A., Picazo, C., Rochera, C., Vicente, E., Andreu, E., Andreu, O., Correcher, E., Martínez, J. F., & García J. (2004) Evaluation of in situ microbial bioremediation for improving river sediment quality: An experimental study. In 5thinternational symposium on ecohydraulics. Aquatic habitats: analysis & restoration, Madrid, Spain.

  61. Arceivala, S. J., & Asolekar, S. R. (2006). Wastewater treatment for pollution control and reuse (3rd ed.). New Delhi: Tata McGraw-Hill education.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the municipalities of the studied areas (mentioned in the Supplementary Materials) whom helped in collecting and analyzing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Pishgar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 908 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishgar, R., Lee, J., Dominic, J.A. et al. Augmentation of Biogranules for Enhanced Performance of Full-Scale Lagoon-Based Municipal Wastewater Treatment Plants. Appl Biochem Biotechnol 191, 426–443 (2020). https://doi.org/10.1007/s12010-020-03256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03256-3

Keywords

Navigation