Skip to main content
Log in

Iron(II) phthalocyanine (FePc) over carbon support for oxygen reduction reaction electrocatalysts operating in alkaline electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we initially report a detailed advancement in the utilization of metal-N4 chelate macrocycles in the oxygen reduction reaction (ORR). Then, iron(II) phthalocyanines supported on two different carbon-based supports specifically carbon nanotube and black pearl (carbon spheres) were synthesized and their activities toward ORR in alkaline media were studied. With the help of physical and surface characterization like Raman, BET, XRD, XPS, and electron microscopy analysis, the similarity in surface chemistry and surface area of the materials and the differences in the structure and morphology of the supports were established. This work also brings forth the effect of support properties on the electrocatalytic activity of the materials by a detailed electrochemical analysis using rotating disk electrode in oxygen saturated 0.1 M KOH. Comparison with existing literature on Fe-phthalocyanine supported on diverse carbon support is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thompson ST, James BD, Huya-Kouadio JN, Cassidy Houchin C, Daniel A, De Santis DA, Rajesh Ahluwalia R, Wilson AR, Kleen G, Papageorgopoulos D (2018) Direct hydrogen fuel cell electric vehicle cost analysis: system and high-volume manufacturing description, validation, and outlook. J Power Sources 399:304–313

    Article  CAS  Google Scholar 

  2. Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells. Part I: the cathode challenges. Platin Met Rev 46:117–135

    CAS  Google Scholar 

  3. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_2

    Chapter  Google Scholar 

  4. Kinoshita K, Electrochemical society, electrochemical oxygen technology, Wiley, 1992, https://www.wiley.com/en-us/Electrochemical+Oxygen+Technology-p 978–0–471-57043-1]

  5. Chen Y, Artyushkova K, Rojas-Carbonell S, Serov A, Matanovic I, Santoro C, Asset T, Atanassov P (2018) Inhibition of surface chemical moieties by tris(hydroxymethyl) aminomethane: a key to understanding oxygen reduction on iron–nitrogen–carbon catalysts. ACS Appl Energy Mater 1:1942–1949

    Article  CAS  Google Scholar 

  6. Tylus U, Jia Q, Hafiz H, Allen RJ, Barbiellini B, Bansil A, Mukerjee S (2016) Engendering anion immunity in oxygen consuming cathodes based on Fe-Nx electrocatalysts: spectroscopic and electrochemical advanced characterizations. Appl Catal B Environ 198:318–324

    Article  CAS  Google Scholar 

  7. Yang W, Li J, Lan L, Fu Q, Zhang Z, Zhu X, Liao Q (2018) Poison tolerance of non-precious catalyst towards oxygen reduction reaction. Int J Hydrog Energy 43:8474–8479

    Article  CAS  Google Scholar 

  8. Minachev KM, Shuikin NI, Rozhdestivenskaya ID (1952) Poisoning of platinum catalysts with a low content of active metal on a carrier, under conditions of dehydrogenation catalysis. B Acad Sci 1:567–575

    Google Scholar 

  9. Reshetenko TV, Bethune K, Rubio MA, Rocheleau R (2014) Study of low concentration CO poisoning of Pt anode in a proton exchange membrane fuel cell using spatial electrochemical impedance spectroscopy. J Power Sources 269(2014):344–365

    Article  CAS  Google Scholar 

  10. Reshetenko TV, St-Pierre J (2015) Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system. J. Power Sources 287:401–415

    Article  CAS  Google Scholar 

  11. Reshetenko TV, St-Pierre J (2015) Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system. J Power Sources 293:929–940

    Article  CAS  Google Scholar 

  12. Thompson S (2018) Direct hydrogen fuel cell electric vehicle cost analysis: system and high-volume manufacturing description, validation, and outlook. J Power Sources 399:304–313

    Article  CAS  Google Scholar 

  13. Setzler BP, Zhuang Z, Wittkop JA, Yan Y (2016) Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat Nanotechnol 11(12):1020–1025

    Article  CAS  PubMed  Google Scholar 

  14. Lefèvre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  PubMed  CAS  Google Scholar 

  15. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  CAS  Google Scholar 

  16. Artyushkova K, Serov A, Rojas-Carbonell S, Atanassov P (2015) Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal-nitrogen-carbon electrocatalysts. The J Phys Chem C 119:25917–25928

    Article  CAS  Google Scholar 

  17. Olson TS, Pylypenko S, Fulghum JE, Atanassov P (2010) Bifunctional oxygen reduction reaction mechanism on non-platinum catalysts derived from pyrolyzed porphyrins. J Electrochem Soc 157:54–63

    Article  CAS  Google Scholar 

  18. Venegas R, Zagal JH, Kruusenberg I, Tammeveski K, Recio J, Muñoz K (2017) Oxygen reduction on carbon-supported metallophthalocyanines and metalloporphyrins. Elsevier Encyclopedia of Interfacial Chemistry and Electrochemistry 812-819

  19. Zagal JH, Fethi B (Eds.) electrochemistry of N4 macrocyclic metal complexes. Volume 1: energy. Springer

  20. Zagal JH, Koper MTM (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chemi Int 55:14510–14521

    Article  CAS  Google Scholar 

  21. Abarca B, Viera M, Aliaga C, Marco JF, Orellana W, Zagal JH, Tasca F (2019) In search of the most active MN4 catalyst for the oxygen reduction reaction. The case of perfluorinated Fe phthalocyanine. J Mater Chem A 7:24776–24783

    Article  CAS  Google Scholar 

  22. Kimura M, Kuroda T, Ohta K, Hanabusa K, Shirai H, Kobayashi N (2003) Self-organization of hydrogen-bonded optically active phthalocyanine dimers. Langmuir 19:4825–4830

    Article  CAS  Google Scholar 

  23. Dong G, Huang M, Guan L (2012) Iron phthalocyanine coated on single-walled carbon nanotubes compositefor the oxygen reduction reaction in alkaline mediaw. Phys Chem Chem Phys 14(8):2557–2559

    Article  CAS  PubMed  Google Scholar 

  24. Alsudairi A, Li J, Ramaswamy N, Mukerjee S, Abraham KM, Jia Q (2017) Resolving the iron phthalocyanine redox transitions for ORR catalysis in aqueous media. J Phys Chem Lett 8:2881–2886

    Article  CAS  PubMed  Google Scholar 

  25. Van Den Brink F, Visscher W, Barendrecht E (1984) Electrocatalysis of cathodic oxygen reduction by metal phthalocyaninesn. Part III. Iron phthalocyanine as electrocatalyst: experimental part. J Elecrroanal Chem 172:301–325

    Article  Google Scholar 

  26. Zagal JH, Pgez M, Tanaka AA, Santos JR, Linkous CA (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Ekctroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  27. Zagal JH, Griveau S, SilvA JF, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  28. Wu K-H, Shi W, Wang D, Xu J, Ding Y, Lin Y, Qi W, Zhang B, Su D (2017) In situ electrostatic modulation of path selectivity for the oxygen reduction reaction on Fe−N doped carbon catalyst. Chem Mater 29:4649–4653

    Article  CAS  Google Scholar 

  29. Zhang Z, Dou M, Ji J, Wang F (2017) Phthalocyanine tethered iron phthalocyanine on graphitized carbon black as superior electrocatalyst for oxygen reduction reaction. Nano Energy 34:338–343

    Article  CAS  Google Scholar 

  30. Cui L, Lv G, Dou Z, He X (2013) Fabrication of iron phthalocyanine/graphene micro/nanocomposite by solvothermally assisted π–π assembling method and its application for oxygen reduction reaction. Electrochim Acta 106:272–278

    Article  CAS  Google Scholar 

  31. Taniguchi T, Tateishi H, Miyamoto S, Hatakeyama K, Ogata C, Funatsu A, Hayami A, Makinose Y, Matsushita N, Koinuma M, Matsumoto Y (2013) A self-assembly route to an iron phthalocyanine/reduced graphene oxide hybrid electrocatalyst affording an ultrafast oxygen reduction reaction. Part Part Syst Charact 30:1063–1070

    Article  CAS  Google Scholar 

  32. Jiang Y, Yizhong L, Lv X, Han D, Zhang Q, Niu L, Chen W (2013) Enhanced catalytic performance of Pt free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal 3:1263–1271

    Article  CAS  Google Scholar 

  33. Zhang C, Hao Z, Yin H, Liu H, Hou L (2012) Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4:7326–7329

    Article  CAS  PubMed  Google Scholar 

  34. Komba N, Zhang G, Wei Q, Yang X, Prakash J, Chenitz R, Rosei F, Sun S (2019) Iron (II) phthalocyanine/N-doped graphene: a highly efficient non-precious metal catalyst for oxygen reduction. Int J Hydrog Energy 44:18110–18114

    Article  CAS  Google Scholar 

  35. Cheng Y, Wu X, Veder J-P, Thomsen L, Jiang S-P, Wang S (2019) Tuning the electrochemical property of the ultrafine metal-oxide nanoclusters by iron phthalocyanine as efficient catalysts for energy storage and conversion. Energy Environ Mater 2:5–17

    Article  CAS  Google Scholar 

  36. Li M, Bo X, Zhang Y, Han C, Guo L (2014) Comparative study on the oxygen reduction reaction electrocatalytic activities of iron phthalocyanines supported on reduced graphene oxide, mesoporous carbon vesicle, and ordered mesoporous carbon. J Power Sources 264:114–122

    Article  CAS  Google Scholar 

  37. Liu Y, Wu Y-Y, Lv G-J, Pu T, He X-Q, Cu L-L (2013) Iron (II) phthalocyanine covalently functionalized graphene as a highlyefficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media. Electrochim Acta 112:269–278

    Article  CAS  Google Scholar 

  38. Zhang Y, Qian L, Zhao W, Li X, Huang X, Mai X, Wang Z, Shao Q, Yan X, Guo Z (2018) Highly efficient Fe-N-C nanoparticles modified porous graphene composites for oxygen reduction reaction. J Electrochem Soc 165:H510–H516

    Article  CAS  Google Scholar 

  39. Ohtsuka M, kitamura F (2015) On the formal redox potential of oxygen reduction reaction at iron phthalocyanine/graphene composite electrode in alkaline media. Electrochemistry 83: 376–380

  40. Taniguchi T, Tateishi H, Miyamoto S, Hatakeyama K, Ogata K, Funatsu A, Hayami S, Makinose Y, Matsushita N, Koinuma M, Matsumoto Y (2013) A self-assembly route to an iron phthalocyanine/reduced graphene oxide hybrid electrocatalyst affording an ultrafast oxygen reduction reaction. Particle 30:1063–1070

    CAS  Google Scholar 

  41. Qiu X, Yan X, Pang H, Wang J, Sun JD, Wei S, Xu L, Tang Y (2018) Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction. Adv Sci 6:1801103

    Article  CAS  Google Scholar 

  42. Nabae Y, Moriya S, Matsubayashi K, Lyth JM, Malon M, Wu L, Islam NM, Koshigoe W, Kuroki S, Kakimoto MA, Miyata S, Ozaki JI (2010) The role of Fe species in the pyrolysis of Fe phthalocyanine and phenolic resin for preparation of carbon-based cathode catalysts. Carbon 48:2613–2624

    Article  CAS  Google Scholar 

  43. Miller AH, Bellini M, Oberhauser W, Deng X, Chen H, He Q, Passaponti M, Innocenti M, Yang R, Sun F, Jiang Z, Vizza F (2016) Heat treated carbon supported iron (II) phthalocyanine oxygen reduction catalysts: elucidation of the structure-activity relationship using X-ray absorption spectroscopy. Phys Chem Chem Phys 18(48):33142–33151

    Article  CAS  PubMed  Google Scholar 

  44. Chung DY, Kim MJ, Kang N, Yoo JM, Shin H, Kim O-H, Sung Y-E (2017) Low-temperature and gram-scale synthesis of two-dimensional Fe-N-C carbon sheets for robust electrochemical oxygen reduction reaction. Chem Mater 29:2890–2898

    Article  CAS  Google Scholar 

  45. Zagal JH, Recio FJ, Gutierrez CA, Zuñiga C, Páez MA, Claudia A (2014) Caro towards a unified way of comparing the electrocatalytic activity MN4 macrocyclicmetal catalysts for O2 reduction on the basis of the reversible potential of the reaction. Electrochem Commun 41:24–26

    Article  CAS  Google Scholar 

  46. Zuniga C, Candia-Onfray C, Venegas R, Munoz K, Urra J, Sanchez-Arenillas M, Marco JF, Zagal JH, Recio FJ (2019) Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media. Electrochem Commun 102:78–82

    Article  CAS  Google Scholar 

  47. Monteverde Videla AHA, Osmieri L, Specchia S (2016) Non-noble metal (NNM) catalysts for fuel cells: tuning the activity by a rational step by step single variable evolution. In: Bedioui F, Zagal JH (eds) Electrochemistry of N4 macrocyclic metal complexes. Springer International Publishing AG, Switzerland, pp 69–101

    Chapter  Google Scholar 

  48. Alessandro HA, Monteverde V, Osmieri L, Armandi M, Specchia S (2015) Varying the morphology of Fe-N-C electrocatalysts by templating iron phthalocyanine precursor with different porous SiO2 to promote the oxygen reduction reaction. Electrochim Acta 177:43–50

    Article  CAS  Google Scholar 

  49. Osmieri L, Alessandro HA, Monteverde V, Armandi M, Specchia S (2016) Influence of different transition metals on the properties of Me-N-C (Me = Fe, Co, Cu, Zn) catalysts synthesized using SBA-15 as tubular nano-silica reactor for oxygen reduction reaction. Int J Hydrog Energy 41:22570–22588

    Article  CAS  Google Scholar 

  50. Alessandro HA, Monteverde V, Sebastian D, Vasile NS, Osmieri L, Arico AS, Baglio V, Specchia S (2016) Performance analysis of Fe-N-C catalyst for DMFC cathodes: effect of water saturation in the cathodic catalyst layer. Int J Hydrog Energy 47:22605–22618

    Google Scholar 

  51. Osmieri L, Escudero-Cid R, Alessandro HA, Monteverde V, Ocón P, Specchia S (2018) Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell. Renew Energy 115:226–237

    Article  CAS  Google Scholar 

  52. Yan X, Xu X, Liu Q, Guo J, Kang L, Yao J (2018) Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media. J Power Sources 389:260–269

    Article  CAS  Google Scholar 

  53. Yang J, Toshimitsu F, Yang Z, Fujigaya T, Nakashima N (2017) Pristine carbon nanotube/iron phthalocyanine hybrids with a well-defined nanostructure show excellent efficiency and durability for oxygen reduction reaction. J Mater Chem A 5:1184–1191

    Article  CAS  Google Scholar 

  54. Dong G, Huang M, Guan L (2012) Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys Chem Chem Phys 14(8):2557–2559

    Article  CAS  PubMed  Google Scholar 

  55. Cañete P, Silva JF, Zagal JH (2014) Electrocatalytic activity for O2 reduction of unsubstituted and perchlorinated iron phthalocyanines adsorbed on amino-terminated multiwalled carbon nanotubes deposited on glassy carbon electrodes. J Chil Chem Soc 59:2

    Article  Google Scholar 

  56. Venegas R, Recio FJ, Zuniga C, Viera M, Oyarzun M-P, Silva N, Neira F, Marco JF, Zagal JH, Tasca F (2017) Comparison of the catalytic activity for O2 reduction of Fe and Co MN4 adsorbed on graphite electrodes and on carbon nanotubes. Phys Chem Chem Phys 19:20441–20450

    Article  CAS  PubMed  Google Scholar 

  57. Kim D-H, Kwak D-H, Han S-B, Park H-S, Park J-Y, Won J-E, Ma K-B, Yun S-H, HuiKwon S, Koh MK, Park K-W (2018) The role of arginine as nitrogen doping and carbon source for enhanced oxygen reduction reaction. Int J Hydrog Energy 43:1479–1488

    Article  CAS  Google Scholar 

  58. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang L-J, Wang J-Q, Hu J-S, Wei Z, Wan L-J (2016) Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J Am Chem Soc 138(10):3570–3578

    Article  CAS  PubMed  Google Scholar 

  59. Daems N, Sheng X, Alvarez-Gallego Y, Vankelecoma IFJ, Pescarmona PP (2016) Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a H2–NO fuel cell. Green Chem 18:1547–1559

    Article  CAS  Google Scholar 

  60. Yang D-S, Song MY, Singh KP, Yu J-S (2015) The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon. Chem Commun 51(12):2450–2453

    Article  CAS  Google Scholar 

  61. Zhang Z, Dou M, Ji J, Waing F (2017) Phthalocyanine tethered iron phthalocyanine on graphitized carbon black as superior electrocatalyst for oxygen reduction reaction. Nano Energy 34:338–343

    Article  CAS  Google Scholar 

  62. Liu Y, Fan Y-S, Liu Z-M (2019) Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells. Chem Eng J 361:416–427

    Article  CAS  Google Scholar 

  63. Saputro AG, Kasai H (2015) Oxygen reduction reaction on neighboring Fe–N4 and quaternary-N sites of pyrolized Fe/N/C catalyst. Phys Chem Chem Phys 17(5):3059–3071

    Article  CAS  PubMed  Google Scholar 

  64. González EA, Gulppi Z, Páez MA, Zagal JH (2016) O2 reduction on electrodes modified with nitrogen doped carbon nanotubes synthesized with different metal catalysts. Diam Relat Mater 64:119–129

    Article  CAS  Google Scholar 

  65. Zhang Z, Sun J, Wang F, Dai L (2018) Efficient oxygen reduction reaction (ORR) catalysts based on single Iron atoms dispersed on a hierarchically structured porous carbon framework. Angew Chem 57:9038–9043

    Article  CAS  Google Scholar 

  66. Ao X, Zhang W, Li Z, Lv L, Ruan Y, Wu H-H, Chiang W-H, Wang C, Liue M, Zeng XC (2019) Unraveling the high-activity nature of Fe-N-C electrocatalysts for oxygen reduction reaction: the extraordinary synergy between Fe-N4 and Fe4N. J Mater Chem A 7:11792–11801

    Article  CAS  Google Scholar 

  67. Chen M, He Y, Spendelow JS, Wu G (2019) Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Lett 4:1619–1633

    Article  CAS  Google Scholar 

  68. Zhanga H, Osgooda H, Xie XH, Shao Y, Wua G (2017) Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy 31:331–350

    Article  CAS  Google Scholar 

  69. Huang X, Yang Z, Dong B, Wang Y, Tang T, Hou Y (2017) In-situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale 9(24):8102–8106

    Article  CAS  PubMed  Google Scholar 

  70. Jiao L, Wan G, Zhang R, Zhou H, Yu S-H, Jiang H-L (2018) From metal–organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew Chem Int Ed 57:1–6

    Article  CAS  Google Scholar 

  71. Wang Y, Wang M, Zhang Z, Wang Q, Jiang Z, Lucero M, Zhang X, Li X, Gu M, Feng Z, Liang Y (2019) Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal 9:6252–6626

    Article  CAS  Google Scholar 

  72. Wang S, Li F, Wang F, Qiao D, Sun C, Liu J (2018) A superior oxygen reduction reaction electrocatalyst based on reduced graphene oxide and iron (II) phthalocyanine-supported Sub-2 nm platinum nanoparticles. ACS Appl Nano Mater 1:711–721

    Article  CAS  Google Scholar 

  73. Praats R, Kruusenberg I, Käärik M, Joost U, Aruvälic J, Paiste P, Saar P, Rauwel P, Kook M, Leis J, Zagal JH, Tammeveski K (2019) Electroreduction of oxygen in alkaline solution on iron phthalocyanine modified carbide-derived carbons. Electrochim Acta 299:999–1010

    Article  CAS  Google Scholar 

  74. Seo MH, Higgins D, Jiang G, Choi SM, Han B, Chen Z (2014) Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. J Mater Chem A 2:19707–19716

    Article  CAS  Google Scholar 

  75. Mussell S, Choudhury P (2016) Density functional theory study of iron phthalocyanine porous layer deposited on graphene substrate: a Pt-free electrocatalyst for hydrogen fuel cells. J Phys Chem C120:5384–5391

    Google Scholar 

  76. Cao R, Thapa R, Kim H, Xu X, Gyu Kim M, Li Q, Park N, Liu M, Cho J (2013) Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat Commun 4:2076

    Article  PubMed  CAS  Google Scholar 

  77. Torre B, Svec M, Hapala P, Redondo J, Krejcí O, Lo R, Manna D, Sarmah A, Nachtigallová D, Tuček J, Błoński P, Otyepka M, Zboril M, Hobza P, Jelínek P (2018) Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat Commun 9:2831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hu X, Xia D, Zhang L, Zhang J (2013) High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction. J Power Sources 231:91–96

    Article  CAS  Google Scholar 

  79. Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J, Li Y (2016) Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction. Nano Res 9:1497–1506

    Article  CAS  Google Scholar 

  80. Santoro C, Gokhale R, Mecheri B, D'Epifanio A, Licoccia S, Serov A, Artyushkova K, Atanassov P (2017) Design of iron (II) phthalocyanine-derived oxygen reduction electrocatalysts for high-power-density microbial fuel cells. ChemSusChem 10:3243–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yin X, Chung HT, Martinez U, Lin L, Artyushkova K, Zelenay P (2019) PGM-free ORR catalysts designed by templating PANI-type polymers containing functional groups with high affinity to Iron. J Electrochem Soc 166:F3240–F3245

    Article  CAS  Google Scholar 

  82. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 15:1774

    Article  CAS  Google Scholar 

  83. Raggio M, Mecheri B, Nardis S, D'Epifanio A, Licoccia S, Paolesse R (2019) Metallo-Corroles supported on carbon nanostructures as oxygen reduction electrocatalysts in neutral media. Eur J Inorg Chem 44:4760–4765

    Article  CAS  Google Scholar 

  84. Alsudairi A, Li J, Ramaswamy N, Mukerje S, Abraham KM, Jia Q (2017) Resolving the iron phthalocyanine redox transitions for ORR catalysis in aqueous media. J Phys Chem Lett 8(13):2881–2886

    Article  CAS  PubMed  Google Scholar 

  85. Zhao X, Zou X, Yan X, Brown CL, Chen Z, Zhu G, Yao X (2016) Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorg Chem Front 3:417–421

    Article  CAS  Google Scholar 

  86. Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563

    Article  CAS  Google Scholar 

  87. Mecheri B, Ficca VCA, Oliveira MAC, D’Epifanio A, Placidi E, Arciprete F, Licoccia F (2018) Facile synthesis of graphene-phthalocyanine composites as oxygen reduction electrocatalysts in microbial fuel cells. Appl Catal B-Environ 237:699–707

    Article  CAS  Google Scholar 

  88. Ning X, Li Y, Ming J, Wang Q, Wang H, Cao Y, Peng F, Yang Y, Yu H (2019) Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem Sci 10(6):1589–1596

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Santoro, Barbara Mecheri or Plamen Atanassov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.A.C., Ficca, V.C.A., Gokhale, R. et al. Iron(II) phthalocyanine (FePc) over carbon support for oxygen reduction reaction electrocatalysts operating in alkaline electrolyte. J Solid State Electrochem 25, 93–104 (2021). https://doi.org/10.1007/s10008-020-04537-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04537-x

Keywords

Navigation