Skip to main content
Log in

Pore-scale simulation of internal reaction mechanism of positive electrode for zinc-nickel single-flow battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

According to the structure and working characteristics of zinc-nickel single-flow battery stack cell, this paper proposes a pore-size analysis model for internal mass transfer and chemical reaction of positive electrode to describe liquid-phase mass transfer, solid-phase mass transfer, and electrochemical reaction. The lattice Boltzmann method was used to simulate the steady-state reaction under constant current charging. The distribution of the concentration of liquid-phase reaction ions, the proton concentration of the solid phase, and the reaction current density were determined. The influence of electrolyte flow velocity and constant current charge-current density on the electrode reaction was further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

j Ni :

Reaction current on the surface of the positive solid phase

i Ni, ref :

Positive electrode exchange current density

\( {C}^{{\mathrm{OH}}^{-}} \) :

Hydroxide concentration

\( {C}_{\mathrm{ref}}^{{\mathrm{OH}}^{-}} \) :

Positive electrode hydroxide reference concentration

\( {C}^{{\mathrm{H}}^{+}} \) :

Proton concentration

\( {C}_{\mathrm{ref}}^{{\mathrm{H}}^{+}} \) :

Positive reference proton concentration

\( {C}_{\mathrm{max}}^{{\mathrm{H}}^{+}} \) :

Positive proton maximum concentration

a 1 :

Cathode transfer coefficient

η 1 :

Positive reaction overpotential

R :

Molar gas constant

F :

Faraday constant

T :

Temperature

f i :

Particle distribution function

Δt :

Time step

Δx :

Lattice length

ω :

Relaxation frequency

τ :

Relaxation factor

υ :

Fluid viscosity

\( {f}_{\mathrm{i}}^{\mathrm{eq}} \) :

Equilibrium distribution function

c i :

Discrete speed

\( \overrightarrow{u} \) :

Convective velocity vector

c k :

Unit vector along the flow direction

c s :

Lattice acoustic velocity

w i :

Weight factor

g i :

OH concentration distribution function

\( {g}_{\mathrm{i}}^{\mathrm{eq}} \) :

Equilibrium distribution function of OHmass transfer process

φ(x, t):

OH concentration in LBM model

h i :

H+ concentration distribution function

\( {h}_i^{\mathrm{eq}} \) :

Equilibrium distribution function of H+ mass transfer

ϕ(x, t):

H+ concentration in LBM model

I :

Current density

ρ :

Fluid density

BGK:

Single relaxation model (Boltzmann-BGK equation)

D2Q9:

2D and 9 discrete speeds

\( {D}^{{\mathrm{OH}}^{-}} \) :

OH diffusion coefficient

\( {D}^{{\mathrm{H}}^{+}} \) :

H+ diffusion coefficient

References

  1. Cheng J, Wen YH, Cao GP (2011) Influence of zinc ions in electrolytes on the stability of nickel oxide electrodes for single flow zinc–nickel batteries. J Power Sources 196:1589–1592

    Article  CAS  Google Scholar 

  2. Qiu G, Joshi AS, Dennison CR (2012) 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery. Electrochim Acta 64:46–64

    Article  CAS  Google Scholar 

  3. Li Q, Luo KH, Kang QJ (2016) Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energy Combust Sci 52:62–105

    Article  Google Scholar 

  4. Chen L, Ruan HB, Tao WB (2010) Electrochemical reaction of cathode flow mass transfer in PEMFC simulated by LBM. J Eng Thermophys V31:1383–1388

    Google Scholar 

  5. Xu H (2013) Lattice Boltzmann simulation of SOFC multi component mass transfer process. J Eng Thermophys 34:1711–1715

    CAS  Google Scholar 

  6. Chen W, Jiang FM (2016) LBM study on the effect of PTFE content and distribution on gas-liquid two-phase flow in PEMFC gas diffusion layer. J Eng Thermophys V37:1475–1483

    Google Scholar 

  7. Liu J, Wang Y (2015) Preliminary study of high energy density Zn/Ni flow batteries. J Power Sources 294:574–579

    Article  CAS  Google Scholar 

  8. Yao S, Liao P, Xiao M (2016) Modeling and simulation of the zinc-nickel single flow batteries based on MATLAB/Simulink. AIP Adv 6:125–302

    Google Scholar 

  9. Yao S, Liao P, Xiao M (2017) Study on electrode potential of zinc nickel single-flow battery during charge. Energies 10:1101

    Article  Google Scholar 

  10. Parasuraman A, Lim TM, Menictas C (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40

    Article  CAS  Google Scholar 

  11. Gu WB, Wang CY (2000) Thermal-electrochemical modeling of battery systems. J Electrochem Soc 147:2910–2922

    Article  CAS  Google Scholar 

  12. Xu H, Dang Z, Bai BF (2012) Numerical simulation of multi species mass transfer in a SOFC electrodes layer using lattice Boltzmann method. J Fuel Cell Sci Technol 9:327–334

    Article  Google Scholar 

  13. Shikazono N, Kanno D, Matsuzaki K (2010) Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images. J Electrochem Soc 157:B665–B672

    Article  CAS  Google Scholar 

  14. Qiu G, Dennison CR, Knehr KW (2012) Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries. J Power Sources 219:223–234

    Article  CAS  Google Scholar 

  15. Chen L, He YL, Tao WQ (2017) Pore-scale study of multiphase reactive transport in fibrous electrodes of vanadium redox flow batteries. Electrochim Acta 248:425–439

    Article  CAS  Google Scholar 

  16. Wang M, Wang JK, Pan N, Chen SY (2007) Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys Rev E 75:036702–036712

    Article  Google Scholar 

  17. Wang M, Wang JK, Pan N, Chen SY, He JH (2007) Three-dimensional effect on the effective thermal conductivity of porous med. J Phys D Appl Phys 40:260–265

    Article  Google Scholar 

  18. Srinivasan V, Weidner JW, White RE (2000) Mathematical models of the nickel hydroxide active material. J Solid State Electrochem 4:367–382

    Article  CAS  Google Scholar 

  19. Hu SW, Zhu YX, You R (2010) Diffusion simulation of chloride ions in reinforced concrete structures under external electric field. J Waterway Eng 8:7–11

    Google Scholar 

  20. Xu A, Wei S, Zhao T (2017) Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mech Sinica 33:1–20

    Google Scholar 

  21. Fu YH, Bai L, Luo KH (2017) Modeling mass transfer and reaction of dilute solutes in a ternary phase system by the lattice Boltzmann method. Phys Rev E 95:043304

    Article  Google Scholar 

  22. Yao SG, Zhao YH, Sun XF, Zhao Q, Cheng J (2019) A dynamic model for discharge research of zinc-nickel single flow battery. Electrochim Acta 307:573–581

    Article  CAS  Google Scholar 

  23. Yao SG, Zhao YH, Sun XF, Ding DP, Cheng J (2019) Numerical studies of cell stack for zinc-nickel single flow battery. Int J Electrochem Sci 14:2160–2174

    Article  CAS  Google Scholar 

Download references

Funding

This paper was supported by the National Natural Science Foundation Project of China (No. 51776092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.G. Yao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Xu, L., Li, Y. et al. Pore-scale simulation of internal reaction mechanism of positive electrode for zinc-nickel single-flow battery. J Solid State Electrochem 24, 915–928 (2020). https://doi.org/10.1007/s10008-020-04536-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04536-y

Keywords

Navigation