Skip to main content
Log in

Ferric nitrosylated myoglobin catalyzes peroxynitrite scavenging

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Myoglobin (Mb), generally taken as the molecular model of monomeric globular heme-proteins, is devoted: (i) to act as an intracellular oxygen reservoir, (ii) to transport oxygen from the sarcolemma to the mitochondria of vertebrate heart and red muscle cells, and (iii) to act as a scavenger of nitrogen and oxygen reactive species protecting mitochondrial respiration. Here, the first evidence of ·NO inhibition of ferric Mb- (Mb(III)) mediated detoxification of peroxynitrite is reported, at pH 7.2 and 20.0 °C. ·NO binds to Mb(III) with a simple equilibrium; the value of the second-order rate constant for Mb(III) nitrosylation (i.e., ·NOkon) is (6.8 ± 0.7) × 104 M−1 s−1 and the value of the first-order rate constant for Mb(III)-NO denitrosylation (i.e., ·NOkoff) is 3.1 ± 0.3 s−1. The calculated value of the dissociation equilibrium constant for Mb(III)-NO complex formation (i.e., ·NOkoff/·NOkon = (4.6 ± 0.7) × 10−5 M) is virtually the same as that directly measured (i.e., ·NOK = (3.8 ± 0.5) × 10−5 M). In the absence of ·NO, Mb(III) catalyzes the conversion of peroxynitrite to NO3, the value of the second-order rate constant (i.e., Pkon) being (1.9 ± 0.2) × 104 M−1 s−1. However, in the presence of ·NO, Mb(III)-mediated detoxification of peroxynitrite is only partially inhibited, underlying the possibility that also Mb(III)-NO is able to catalyze the peroxynitrite isomerization, though with a reduced rate (Pkon* = (2.8 ± 0.3) × 103 M−1 s−1). These data expand the multiple roles of ·NO in modulating heme-protein actions, envisaging a delicate balancing between peroxynitrite and ·NO, which is modulated through the relative amount of Mb(III) and Mb(III)-NO.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

Hb:

Hemoglobin

Hb(III):

Ferric Hb

Hb(IV)=O:

Ferryl-Hb

Hb(II):

Ferrous Hb

Hb(II)-CO:

Carbonylated Hb(II)

Hb(II)-NO:

Nitrosylated Hb(II)

Hb(II)-O2 :

Oxygenated Hb(II)

Mb:

Myoglobin

Mb(III):

Ferric Mb

Mb(IV)=O:

Ferryl-Mb

Mb(III)-NO:

Nitrosylated Mb(III)

Mb(II)-CO:

Carbonylated Mb(II)

Mb(II)-NO:

Nitrosylated Mb(II)

Mb(II):

Ferrous Mb

Mb(II)-O2 :

Oxygenated Mb(II)

MI :

4-Methyl-1H-imidazolate

HMI:

4-Methyl-1H-imidazol

ONOO :

Peroxynitrite anion

ONOOH:

Peroxynitrous acid

References

  1. Goldstein S, Lind J, Merényi G (2005) Chem Rev 105:2457–2470

    Article  CAS  PubMed  Google Scholar 

  2. Herold S, Exner M, Nauser T (2001) Biochemistry 40:3385–3395

    Article  CAS  PubMed  Google Scholar 

  3. Herold S, Shivashankar K (2003) Biochemistry 42:14036–14046

    Article  CAS  PubMed  Google Scholar 

  4. Herold S, Kalinga S, Matsui T, Watanabe Y (2004) J Am Chem Soc 126:6945–6955

    Article  CAS  PubMed  Google Scholar 

  5. Møller JKS, Skibstedm LH (2004) Chem Eur J 10:2291–2300

    Article  PubMed  CAS  Google Scholar 

  6. Exner M, Herold S (2000) Chem Res Toxicol 13:287–293

    Article  CAS  PubMed  Google Scholar 

  7. Bunn HF, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. WB Sauders Co, Philadelphia

    Google Scholar 

  8. Brunori M (2001) Trends Biochem Sci 26:21–23

    Article  CAS  PubMed  Google Scholar 

  9. Brunori M (2001) Trends Biochem Sci 26:209–210

    Article  CAS  PubMed  Google Scholar 

  10. Bannister JV, Bannister WH, Rotilio G (1987) CRC Crit Rev Biochem 22:111–180

    Article  CAS  PubMed  Google Scholar 

  11. Halliwell B (1978) Cell Biol Int Rep 2:113–128

    Article  CAS  PubMed  Google Scholar 

  12. Beckman JS, Koppenol WH (1996) Am J Physiol 271:C1424–C1437

    Article  CAS  PubMed  Google Scholar 

  13. Herold S, Fago A (2005) Comp Biochem Physiol A Mol Integr Physiol 142:124–129

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein S, Merényi G (2008) Methods Enzymol 436:49–61

    Article  CAS  PubMed  Google Scholar 

  15. Ascenzi P, di Masi A, Sciorati C, Clementi E (2010) Biofactors 36:264–273

    Article  CAS  PubMed  Google Scholar 

  16. Radi R, Beckman JS, Bush KM, Freeman BA (2015) J Biol Chem 290:30726–30727

    Article  CAS  Google Scholar 

  17. Bartesaghi S, Radi R (2018) Redox Biol 14:618–625

    Article  CAS  PubMed  Google Scholar 

  18. Herold S (2001) Rehmann F-JK. J Biol Inorg Chem 6:543–555

    Article  CAS  PubMed  Google Scholar 

  19. Herold S (2003) Rehmann F-JK. Free Radical Biol Med 34:531–545

    Article  CAS  Google Scholar 

  20. Herold S (2004) Inorg Chem 43:3783–3785

    Article  CAS  PubMed  Google Scholar 

  21. Herold S (2006) Inorg Chem 45:6933–6943

    Article  CAS  PubMed  Google Scholar 

  22. Ascenzi P, Ciaccio C (2007) Coletta M. Biochem Biophys Res Commun 363:931–936

    Article  CAS  PubMed  Google Scholar 

  23. Hoshino M, Maeda M, Konishi R, Seki H, Ford PC (1996) J Am Chem Soc 118:5702–5707

    Article  CAS  Google Scholar 

  24. Barbosa RM, Lopes Jesus AJ, Santos RM, Pereira CL, Marques CF, Rocha BS, Ferreira NR, Ledo A, Laranjin J (2011) Global J Anal Chem 2:272–284

    CAS  Google Scholar 

  25. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North Holland Publishing Co, Amsterdam

    Google Scholar 

  26. Ascenzi P, Brunori M, Pennesi G, Ercolani C, Monacelli F (1987) J Chem Soc Dalton Trans 369–371

  27. Mehl M, Daiber A, Herold S, Shoun H, Ullrich V (1999) Nitric Oxide 3:142–152

    Article  CAS  PubMed  Google Scholar 

  28. Shimanovich R, Groves JT (2001) Arch Biochem Biophys 387:307–317

    Article  CAS  PubMed  Google Scholar 

  29. Jensen MP, Riley DP (2002) Inorg Chem 41:4788–4797

    Article  CAS  PubMed  Google Scholar 

  30. Ascenzi P, di Masi A, Coletta M, Ciaccio C, Fanali G, Nicoletti FP, Smulevich G, Fasano M (2009) J Biol Chem 284:31006–31017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ascenzi P, Bolli A, Gullotta F, Fanali G, Fasano M (2010) IUBMB Life 62:776–780

    Article  CAS  PubMed  Google Scholar 

  32. Ascenzi P, Ciaccio C, Sinibaldi F, Santucci R, Coletta M (2011) Biochem Biophys Res Commun 404:190–194

    Article  CAS  PubMed  Google Scholar 

  33. Ascenzi P, Ciaccio C, Sinibaldi F, Santucci R, Coletta M (2011) Biochem Biophys Res Commun 415:463–467

    Article  CAS  PubMed  Google Scholar 

  34. Ascenzi P, Bolli A, di Masi A, Tundo GR, Fanali G, Coletta M, Fasano M (2011) J Biol Inorg Chem 16:97–108

    Article  CAS  PubMed  Google Scholar 

  35. di Masi A, Gullotta F, Bolli A, Fanali G, Fasano M, Ascenzi P (2011) FEBS J 278:654–662. FEBS J 278:4166 (Erratum)

    Article  Google Scholar 

  36. Ascenzi P, Coletta A, Cao Y, Trezza V, Leboffe L, Fanali G, Fasano M, Pesce A, Ciaccio C, Marini S, Coletta M (2013) PLoS One 8:e69762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coppola D, Giordano D, Tinajero-Trejo M, di Prisco G, Ascenzi P, Poole RK, Verde C (2013) Biochim Biophys Acta 1834:1923–1931

    Article  CAS  PubMed  Google Scholar 

  38. Ascenzi P, Leboffe L, Pesce A, Ciaccio C, Sbardella D, Bolognesi M, Coletta M (2014) PLoS One 9:e95391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ascenzi P, Leboffe L, Santucci R, Coletta M (2015) J Inorg Biochem 144:56–61

    Article  CAS  PubMed  Google Scholar 

  40. Ascenzi P, Pesce A (2017) J Biol Inorg Chem 22:1141–1150

    Article  CAS  PubMed  Google Scholar 

  41. Ascenzi P, Coletta M (2018) J Phys Chem B 122:11100–11107

    Article  CAS  PubMed  Google Scholar 

  42. De Simone G, di Masi A, Polticelli F, Ascenzi P (2018) FEBS Open Bio 8:2002–2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  44. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:3–6

    Article  CAS  Google Scholar 

  45. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  46. Lanucara F, Chiavarino B, Crestoni ME, Scuderi D, Sinha RK, Maitre P (2011) Fornarini S 50:4445–4452

    CAS  Google Scholar 

  47. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  48. Merényi G, Lind J (1998) Chem Res Toxicol 11:243–246

    Article  PubMed  Google Scholar 

  49. Di Muzio E, Polticelli F, Trezza V, Fanali G, Fasano M, Ascenzi P (2014) Arch Biochem Biophys 560:100–112

    Article  PubMed  CAS  Google Scholar 

  50. Wireko FC, Abraham D (1992) J Protein Eng 5:3–5

    Article  CAS  Google Scholar 

  51. Lawson DM, Stevenson CE, Andrew CR, Eady RR (2000) EMBO J 19:5661–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barbieri S, Murphy LM, Sawers RG, Eady RR, Hasnain SS (2008) J Biol Inorg Chem 13:531–540

    Article  CAS  PubMed  Google Scholar 

  53. Ascenzi P, Santucci R, Coletta M, Polticelli F (2010) Biophys Chem 152:21–27

    Article  CAS  PubMed  Google Scholar 

  54. Silkstone G, Kapetanaki SM, Husu I, Vos MH, Wilson MT (2010) J Biol Chem 285:19785–19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giacometti GM, Ascenzi P, Bolognesi M, Brunori M (1981) J Mol Biol 146:363–374

    Article  CAS  PubMed  Google Scholar 

  56. Coletta M, Ascenzi P, Traylor TG, Brunori M (1985) J Biol Chem 260:4151–4155

    CAS  PubMed  Google Scholar 

  57. Ascenzi P, Coletta M, Desideri A, Brunori M (1985) Biochim Biophys Acta 829:299–302

    Article  CAS  Google Scholar 

  58. Ascenzi P, Condó SG, Bellelli A, Barra D, Bannister WH, Giardina B, Brunori M (1984) Biochim Biophys Acta 788:281–289

    Article  CAS  Google Scholar 

  59. Pennesi G, Ercolani C, Rossi G, Ascenzi P, Brunori M, Monacelli F (1995) J Chem Soc Dalton Trans 1113–1118

  60. Buxton GV (1987) Radiation Chemistry. Principles and Applications. In: Farhataziz, Rodgers MAJ (eds) Verlag Chemie Publishers, Weinheim

  61. Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley-Interscience publication, New York

    Google Scholar 

  62. Conti E, Moser C, Rizzi M, Mattevi A, Lionetti C, Coda A, Ascenzi P, Brunori M, Bolognesi M (1993) J Mol Biol 233(3):498–508

    Article  CAS  PubMed  Google Scholar 

  63. Leci E, Brancaccio A, Cutruzzolà F, Allocatelli CT, Tarricone C, Bolognesi M, Desideri A, Ascenzi P (1995) FEBS Lett 357:227–229

    Article  CAS  PubMed  Google Scholar 

  64. Aime S, Fasano M, Paoletti S, Cutruzzolà F, Desideri A, Bolognesi M, Rizzi M, Ascenzi P (1996) Biophys J 70:482–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maurus R, Bogumil R, Nguyen NT, Mauk AG, Brayer G (1998) Biochem J 332:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McQuarters AB, Kampf JW, Alp EE, Hu M, Zhao J, Lehnert N (2017) J Am Chem Soc 56:10513–10528

    CAS  Google Scholar 

  67. Sharma SK, Schaefer AW, Hyeongtaek L, Matsumura H, Moenne-Loccoz P, Hedman B, Hodgson KO, Solomon EI, Karlin KD (2017) J Am Chem Soc 139:17421–17430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wittenberg BA, Wittenberg JB (1989) Annu Rev Physiol 51:857–878

    Article  CAS  PubMed  Google Scholar 

  69. Flögel U, Merx MW, Godecke A, Decking UK, Schrader J (2001) J Proc Natl Acad Sci USA 98:735–740

    Article  Google Scholar 

  70. Herold S, Boccini F (2006) Inorg Chem 45:6933–6943

    Article  CAS  PubMed  Google Scholar 

  71. Herold S, Fago A, Weber RE, Dewilde S, Moens L (2004) J Biol Chem 279:22841–22847

    Article  CAS  PubMed  Google Scholar 

  72. Herold S, Puppo A (2005) J Biol Inorg Chem 10:946–957

    Article  CAS  PubMed  Google Scholar 

  73. Ascenzi P, Bocedi A, Antonini G, Bolognesi M, Fasano M (2007) FEBS J 274:551–562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The grant of Excellence Departments, MIUR-Italy (Articolo 1, Commi 314-337, Legge 232/2016) is gratefully acknowledged. C. P.-I. thanks Centro de Supercomputación de Galicia (CESGA) for providing the computer facilities (A Coruña, Galicia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ascenzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascenzi, P., De Simone, G., Tundo, G.R. et al. Ferric nitrosylated myoglobin catalyzes peroxynitrite scavenging. J Biol Inorg Chem 25, 361–370 (2020). https://doi.org/10.1007/s00775-020-01767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01767-2

Keywords

Navigation