Skip to main content

Advertisement

Log in

Manufacturing of Short-Chain Fructooligosaccharides: from Laboratory to Industrial Scale

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Short-chain fructooligosaccharides (ScFOS) are a group of linear fructose oligomers that include 1-kestose, 1-nystose and 1-β-fructofuranosylnystose. ScFOS, which naturally occur at low levels in different plant products, are of high interest as food ingredients because of their prebiotic character, organoleptic characteristics and technological properties. Two different industrial processes are used to achieve large-scale ScFOS production: inulin hydrolysis (enzymatic or chemical hydrolysis) or sucrose biotransformation by transfructosylation (enzymatic synthesis) using specific enzymes like fructosyltransferases and fructofuranosidases. Enzymatic ScFOS synthesis seems to be more advantageous than inulin hydrolysis since it is less expensive, and leads to lower molecular weight FOS. The biotechnological process described to carry out this catalysis includes the production of transfructosylation enzymes, separation, enzyme immobilisation and finally the ScFOS production and purification. Such ScFOS production processes may be conducted under submerged or solid-state fermentation under discontinuous or continuous conditions. Several methodologies with different economic/environmental costs and production yields have been described to carry out these ScFOS production stages, although industrial scale-up needs to be optimised. This review tries to address a revision about enzymatic ScFOS production methods and its scale-up to industrial levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fernández-Arrojo L, Plou-Gasca FJ, Ballesteros-Olmo A, Alcalde-Galeote M, Gutiérrez-Alonso P, Fernández-Lobato M (2009) Immobilised biocatalyst based on alginate for the biotransformation of carbohydrates. Patent No WO2010103150 A1

  2. Alvarado-Huallanco MB, Maugeri-Filho F (2010) Kinetics and modeling of fructo-oligosaccharide synthesis by immobilized fructosyltransferase from Rhodotorula sp. J Chem Technol Biotechnol 85:1654–1662

    CAS  Google Scholar 

  3. Andreescu S, Njagi J, Ispas C (2007) Nanostructured materials for enzyme immobilization and biosensors. In: Erokhin V, Ram MK, Yavuz O (eds) The new frontiers of organic and composite nanotechnology. Elsevier, New York, pp 355–394

    Google Scholar 

  4. Armenante PM, Akiti O (2019) Sterilization processes in the pharmaceutical industry. In: Ende MT, Ende DJ (eds) Chemical engineering in the pharmaceutical industry: drug product design, development, and modelling. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  5. Arrizón JP, Amaya-Delgado L, González-Ávila ME, Chesini M, Baruque D, Ghiringhelli PD, Cavalitto SF, Rojas NL (2018) Fructans enzymatic hydrolisis process through the use of a B–fructofuranosidase or inulinase of the Aspergillus kawachii fungi. Mexican Patent 2016016731 A

  6. Balasubramaniem AK, Nagarajan KV, Paramasamy G (2001) Optimization of media for β–fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem 36:1241–1247

    CAS  Google Scholar 

  7. Bornet FRJ (1994) Undigestible sugars in food products. Am J Clin Nutr 59:763S–769S

    CAS  PubMed  Google Scholar 

  8. Bosscher D (2009) Fructan prebiotics derived from inulin. In: Prebiotics and probiotics science and technology. Springer, New York, pp 163–205

    Google Scholar 

  9. Budnik LT, Scheer E, Burge PS, Baur X (2016) Sensitising effects of genetically modified enzymes used in flavour, fragrance, detergence and pharmaceutical production: Cross-sectional study. Occup Environ Med 74:39–45

  10. Caicedo L, Silva E, Sánchez O (2009) Semibatch and continuous fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. J Chem Technol Biotechnol 84:650–656

    CAS  Google Scholar 

  11. Cascaval D, Galaction AI, Folescu E, Turnea M (2006) Comparative study on the effects of n–dodecane addition on oxygen transfer in stirred bioreactors for simulated, bacterial and yeasts broths. Biochem Eng J 31:56–66

    CAS  Google Scholar 

  12. Castro CC, Nobre C, Duprez ME, De Weireld G, Hantson AL (2017) Screening and selection of potential carriers to immobilize Aureobasidium pullulans cells for fructo–oligosaccharides production. Biochem Eng J 118:82–90

    CAS  Google Scholar 

  13. Chacón-Villalobos A (2006) Perspectivas agroindustriales actuales de los oligofructosacáridos (FOS). Agronomía Mesoamericana:265–286

  14. Charalampopoulos D, Rastall RA (2012) Prebiotics in foods. Curr Opin Biotechnol 23:187–191

    CAS  PubMed  Google Scholar 

  15. Chen WC, Liu CH (1996) Production of β−fructofuranosidase by Aspergillus japonicus. Enzym Microb Technol 18:153–160

    CAS  Google Scholar 

  16. Chien CS, Lee WC, Lin TJ (2001) Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzym Microb Technol 29:252–257

    CAS  Google Scholar 

  17. Chisti Y (2010) Fermentation technology. In: Soetaert W, Vandamme EJ (eds) Industrial biotechnology: sustainable growth and economic success. Wiley–VCH, Weinheim, pp 149–171

    Google Scholar 

  18. Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Techno l8:194–204

    Google Scholar 

  19. Cinar A, Parulekar SJ, Undey C, Birol G (2003). Batch fermentation: modeling: monitoring, and control. CRC press 648p

  20. Courtin CM, Swennen K, Verjans P, Delcour JA (2009) Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 112:831–837

    CAS  Google Scholar 

  21. Coussement PAA (1999) Nutritional and health benefits of inulin and oligofructose inulin and oligofructose: safe intakes and legal status. J Nutr 129:1412–1417

    Google Scholar 

  22. Couto SR, Sanromán MA (2006) Application of solid–state fermentation to food industry—a review. J Food Eng 76:291–302

    CAS  Google Scholar 

  23. Crittenden RG, Playne M (1996) Production, properties and applications of food–grade oligosaccharides. Trends Food Sci Technol 7:353–361

    CAS  Google Scholar 

  24. Csanádi Z, Sisak C (2008) Production of short chain fructooligosaccharides. Hungar J Ind Chem 36:1–2

    Google Scholar 

  25. de Almeida MN, Guimarães VM, Falkoski DL, de Camargo BR, Fontes-Sant’ana GC, Maitan-Alfenas GP, de Rezende ST (2018) Purification and characterization of an invertase and a transfructosylase from Aspergillus terreus. J Food Biochem 42:12551

    Google Scholar 

  26. Deng C, Huang T, Jiang Z, Lv X, Liu L, Chen J, Du G (2019) Enzyme engineering and industrial bioprocess. In: Pandey A, Larroche C, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier BV, Amsterdam

    Google Scholar 

  27. Dhake MS, Kumar G (2012) Partial purification and characterization of fructosyltransferase from Aureobasidium pullulans. Int J Sci Environ Technol 1:88–98

    Google Scholar 

  28. Dhake AB, Patil MB (2007) Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Braz J Microbiol 38:194–199

    Google Scholar 

  29. Domínguez A, Nobre C, Rodrigues LR, Peres AM, Torres D, Rocha I, Teixeira J (2012) New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydr Polym 89:1174–1179

    PubMed  Google Scholar 

  30. Dominguez AL, Rodrigues LR, Lima NM, Teixeira JA (2014) An overview of the recent developments on fructooligosaccharide production and applications. Food Bioprocess Technol 7:324–337

    CAS  Google Scholar 

  31. Dorta C, Cruz R, de Oliva-Neto P, Moura DJ (2006) Sugarcane molasses and yeast powder used in the fructooligosaccharides production by Aspergillus japonicus–FCL 119T and Aspergillus niger ATCC 20611. J Ind Microbiol Biotechnol 33:1003–1009

  32. Duan GR, Sheu DC (1996) Production of fructooligosaccharides. Taiwan patents No 270148

  33. Duan KJ, Chen JS, Sheu DC (1994) Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzym Microb Technol 16:334–339

    CAS  Google Scholar 

  34. Fabian GCS, Arrizón J P, Gschaedler-Mathis A, Amaya-Delgado L, Flores-Flores NY, Ordaz LE (2017) Fructan enzymatic hydrolysis process through the use of permeabilized yeast cells of the Kluyveromyces genus. Patent No MX 2016002752A

  35. Fekih-Salem R, Vande Wouwer A, De Castro C, et al. (2015) Parameter identification of the fermentative production of Fructo−oligosaccharides by Aureobasidium pullulans. In: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, pp 43–48

  36. Fernandes P (2010) Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res 2010:1–19

    Google Scholar 

  37. Fernandes P, Carvalho F (2017) Microbial enzymes for the food industry. In: Brahmachari G (ed) Biotechnology of microbial enzymes. Academic Ress, pp 513–544

  38. Fernández-Arrojo L, Rodríguez-Colinas B, Gutiérrez-Alonso P, Fernández-Lobato M, Alcalde M, Ballesteros AO, Plou FJ (2013) Dried alginate–entrapped enzymes (DALGEEs) and their application to the production of fructooligosaccharides. Process Biochem 48:677–682

  39. Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr 41:353–362

    CAS  PubMed  Google Scholar 

  40. Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN (2016) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol l36:259–267

    Google Scholar 

  41. Ganaie MA, Gupta US (2014) Recycling of cell culture and efficient release of intracellular fructosyltransferase by ultrasonication for the production of fructooligosaccharides. Carbohydr Polym 110:253–258

    CAS  PubMed  Google Scholar 

  42. Ganaie MA, Pathak LK, Gupta US (2011) Production of fructoligsaccharides by Aureobasidium Pullulans using immobilization technique. J Food Technol 9:91–94

  43. Ganaie MA, Gupta US, Kango N (2013) Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. J Mol Catal B–Enzym 97:12–17

    CAS  Google Scholar 

  44. Ganaie MA, Rawat HK, Wani OA, Gupta US, Kango N (2014) Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructooligosaccharides. Process Biochem 49:840–844

    CAS  Google Scholar 

  45. Ganaie MA, Soni H, Naikoo GA, Oliveira LTS, Rawat HK, Mehta PK, Narain N (2017) Screening of low cost agricultural wastes to maximize the fructosyltransferase production and its applicability in generation of fructooligosaccharides by solid state fermentation. Int Biodeterior Biodegrad 118:19–26

    CAS  Google Scholar 

  46. García-Martín N, Silva V, Carmona FJ, Palacio L, Hernández A, Prádanos P (2014) Pore size analysis from retention of neutral solutes through nanofiltration membranes. The contribution of concentration–polarization. Desalination 344:1–11

    Google Scholar 

  47. García-Ochoa F, Gómez E (2009) Bioreactor scale–up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    PubMed  Google Scholar 

  48. Ghazi I, De Segura AG, Fernández-Arrojo L, Alcalde M, Yates M, Rojas-Cervantes ML, Ballesteros A (2005) Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy–activated Sepabeads EC for the synthesis of fructo–oligosaccharides. J Mol Catal B–Enzym 35:19–27

    CAS  Google Scholar 

  49. Ghazi I, Fernández-Arrojo L, García-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol 128:204–211

  50. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh GM, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir Wijnkoop I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7:1–19

    Google Scholar 

  51. Gomes AJP (2006) Optimization of fructooligosaccharides from Aspergillus. PhD Thesis. University of Minho (Braga, Portugal)

  52. Gote M, Patil G, Palamalai M, Rengarajan S, Avalakki UK (2014) Process for production of fructoooligosaccharides. US Patent No 8,871,476

  53. Goulas AK, Kapasakalidis PG, Sinclair HR, Rastall RA, Grandison AS (2002) Purification of oligosaccharides by nanofiltration. J Membr Sci 209:321–335

    CAS  Google Scholar 

  54. Goulas AK, Grandison AS, Rastall RA (2003) Fractionation of oligosaccharides by nanofiltration. J Sci Food Agric 83:675–680

    CAS  Google Scholar 

  55. Han JS, Park KJ, Shin DS, Kim JH, Kim JC, Lee KC, Lee WH, Kim SW, Park SW. (2007) Microorganism producing fructosyltransferase and method for producing fructooligosaccharides using the same. US Patent No 7,241,607

  56. Hayashi S, Ito K, Nonoguchi M, Takasaki Y, Imada K (1991) Immobilization of a fructosyl–transferring enzyme from Aureobasidium sp. on Shirasu porous glass. J Ferment Bioeng 72:68–70

    CAS  Google Scholar 

  57. Hayashi S, Hayashi T, Kinoshita J, Takasaki Y, Imada K (1992) Immobilization of β–fructofuranosidase from Aureobasidium sp. ATCC 20524 on porous silica. J Ind Microbiol Biotechnol 9:247–250

    CAS  Google Scholar 

  58. Hayashi S, Matsuzaki K, Inomata Y, Takasaki Y, Imada K (1993) Properties of Aspergillus japonicusβ–fructofuranosidase immobilized on porous silica. World J Microbiol Biotechnol 9:216–212

    CAS  PubMed  Google Scholar 

  59. Henderson WE, King W, Shetty JK (2012) Situ fructooligosaccharides production and sucrose reduction. US Patent No 8,168,242

  60. Hidaka H, Hirayama M, Sumi N (1988b) A fructooligosaccharide–producing enzyme from Aspergillus niger ATCC20611. Agri Biol Chem 52:1181–1187

    CAS  Google Scholar 

  61. Huang MP, Wu M, Xu QS, Mo DJ, Feng JX (2016) Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide–producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. J Agric Food Chem 64:6425–6432

    CAS  PubMed  Google Scholar 

  62. Itabaiana I, Miranda LSDM, de Souza ROMA (2013) Towards a continuous flow environment for lipase–catalyzed reactions. J Mol Catal B–Enzym 85:1–9

    Google Scholar 

  63. Jiang B, Wu B, Miao M, Li X, Zhang T, Yang C (2012) Method for immobilizing fructosyltransferase by taking mesoporous molecular sieve–chitosan as carrier. Chinese Patent No CN102321605

  64. Jossen V, Eibl R, Pörtner R, Kraume M, Eibl D (2017) Stirred bioreactors: current state and developments, with special emphasis on biopharmaceutical production processes. In: Current developments in biotechnology and bioengineering. Elsevier. pp 179–215

  65. Jung KH, Yun JW, Kang KR et al (1989) Mathematical model for enzymatic production of fructo−oligosaccharides from sucrose. Enzym Microb Technol 11:491–494

    CAS  Google Scholar 

  66. Jung KH, Bang SH, Oh TK, Park HJ (2011) Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor. Biotechnol Lett 33:1621–1624

    CAS  PubMed  Google Scholar 

  67. Kim JF, Székely G, Valtcheva IB, Livingston AG (2014) Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study. Green Chem 16:133–145

    Google Scholar 

  68. Kirschning A, Solodenko W, Mennecke K (2006) Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. Chem–Eur J 12:5972–5990

    CAS  PubMed  Google Scholar 

  69. Kotwal SM, Shankar V (2009) Immobilized invertase. Biotech Adv 27:311–322

    CAS  Google Scholar 

  70. Kuhn RC, Filho FM (2010) Purification of fructooligosaccharides in an activated charcoal fixed bed column. New Biotech 27:862–869

  71. Kuhn RC, Mazutti MA (2014) Separation and purification of fructooligosaccharides on a zeolite fixed-bed column. J Sep Sci 37:927–933

    CAS  PubMed  Google Scholar 

  72. Kuhn RC, Filho FM, Silva V, Palacio L, Hernández A, Prádanos P (2010) Mass transfer and transport during purification of fructooligosaccharides by nanofiltration. J Membr Sci 365:356–365

  73. Kuhn RC, Mazutti MA, Albertini LB, Filho FM (2014) Evaluation of fructooligosaccharides separation using a fixed–bed column packed with activated charcoal. New Biotech 31:237–241

  74. Kumar P, Dubey KK (2019) Current perspectives and future strategies for fructooligosaccharides production through membrane bioreactor. In: Shukla P (ed) Applied microbiology and bioengineering. Academic Press, pp 185–202

  75. Kumar CG, Sripada S, Poornachandra Y (2018) Status and future prospects of fructooligosaccharides as nutraceuticals. In: Role of materials science in food bioengineering. Academic Press, pp 451–503

  76. L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84

    PubMed  Google Scholar 

  77. Lai LST, Tsai TH (2002) Application of oxygen vectors to Aspergillus terreus cultivation. J Biosci Bioeng 94:453–459

    CAS  PubMed  Google Scholar 

  78. Lateef A, Oloke JK, Prapulla SG (2007) The effect of ultrasonication on the release of fructosyltransferase from Aureobasidium pullulans CFR 77. Enzym Microb Technol 40:1067–1070

    CAS  Google Scholar 

  79. Leenheer L, Frooninckx KMJ, Heroufosse FAA (2011) Fructooligosaccharide composition, process for its production and use. US Patent No 12/995398

  80. Li G, Zhao H, Yuan W (2014) Method for producing fructooligosaccharide. Chinese Patent No 10,423,270

  81. Li PJ, Xia JL, Shan Y, Nie ZY (2015) Comparative study of multi–enzyme production from typical agro–industrial residues and ultrasound–assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst Eng 38:2013–2022

    CAS  PubMed  Google Scholar 

  82. Lim JS, Park SW, Lee JW, Oh KK, Kim SW (2005) Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neo–fructooligosaccharides. J Microbiol Biotechnol l15:1317–1322

    Google Scholar 

  83. Lin TJ, Lee YC (2008) High–content fructooligosaccharides production using two immobilized microorganisms in an internal–loop airlift bioreactor. J Chin Inst Chem Eng 39:211–217

    CAS  Google Scholar 

  84. Lipnizki F, Boelsmand J, Madsen RF (2002) Concepts of industrial-scale diafiltration systems. Desalination 144:179–184

    CAS  Google Scholar 

  85. Liu D, Zhou K, Fan M, Ye J (2013) Aspergillus niger and method for catalycally producing fructo–oligosaccharide by virtue of whole–cells of Aspergillus niger. Chinese Patent No 103,045,489

  86. Liu Z, Wang N, Liu F, Li K, Luan Q, Liu K, Wang J , Xiong X (2016) Method for producing fructooligosaccharides through cyclic utilization of Aspergillus oryzae strain. Chinese Patent No CN106244645

  87. Löffelholz C, Kaiser SC, Kraume M, Eibl R, Eibl D (2013a) Dynamic single–use bioreactors used in modern liter–and m 3–scale biotechnological processes: engineering characteristics and scaling up. In: Disposable bioreactors II. Springer. pp. 1–44

  88. Löffelholz C, Husemann U, Greller G, Meusel W, Kauling J, Ay P, Eibl D (2013b) Bioengineering parameters for single-use bioreactors: overview and evaluation of suitable methods. Chem Ing Tech 85:40–56

    Google Scholar 

  89. Lomax AR, Calder PC (2009) Probiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 101:633–658

    CAS  PubMed  Google Scholar 

  90. Lorenzoni AS, Aydos LF, Klein MP, Ayub MA, Rodrigues RC, Hertz PF (2015) Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: comparison between in fluidized and packed bed reactors. J Mol Catal B-Enzym 111:51–55

    CAS  Google Scholar 

  91. Madlová A, Antosova M, Polakovič M, Báles V (2000) Thermal stability of fructosyltransferase from Aureobasidium pullulans. Chem Pap 54:339–344

    Google Scholar 

  92. Madrigal L, Sangronis E (2007) La inulina y derivados como ingredientes claves en alimentos funcionales. Arch Latinoam Nutr 57:387

    CAS  PubMed  Google Scholar 

  93. Maiorano AE, Piccoli RM, Da Silva ES, de Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre–biotics. Biotechnol Lett 30:1867–1877

    CAS  PubMed  Google Scholar 

  94. Martins S, Mussatto SI, Martínez-Ávila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: production and extraction by solid–state fermentation. A review. Biotechnol Adv 29:365–373

  95. Martins GN, Ureta MM, Tymczyszyn EE, Castilho P, Gómez-Zavaglia A (2019) Technological aspects of the production of fructo and galacto−oligosaccharides. Enzymatic synthesis and hydrolysis. Front Nutr 6:78

  96. Menéndez C, Martínez D, Pérez ER, Musacchio A, Ramírez R, López-Munguia A, Hernández L (2019) Engineered thermostable β-fructosidase from Thermotoga maritima with enhanced fructooligosaccharides synthesis. Enzym Microb Technol 125:53–62

    Google Scholar 

  97. Mishra S, Mishra HN (2013) Effect of symbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food Bioprocess Technol 6:3166–3176

    CAS  Google Scholar 

  98. Monsan PF, Ouarné F (2009) Oligosaccharides derived from sucrose. In: Prebiotics and probiotics science and technology. Springer New York. pp. 293–336

  99. Montesdeoca VA, Van der Padt A, Boom RM, Janssen AE (2016) Modelling of membrane cascades for the purification of oligosaccharides. J Membr Sci 520:712–722

    Google Scholar 

  100. Muñiz-Márquez DB, Contreras JC, Rodríguez R, Mussatto SI, Teixeira JA, Aguilar CN (2016) Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA–MF in solid–state fermentation using aguamiel as culture medium. Bioresour Technol 213:276–282

    PubMed  Google Scholar 

  101. Muñiz-Márquez DB, Teixeira JA, Mussatto SI, Contreras JC, Rodríguez R, Aguilar CN (2019) Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. LWT 102:75–79

    Google Scholar 

  102. Muramatsu M, Nakakuki T, Kainuma S, Miwa, T (1994) Production method of branched fructooligosaccharides. US Patent No 5,334,516

  103. Mussatto SI, Teixeira JA (2010) Increase in the fructooligosaccharides yield and productivity by solid–state fermentation with Aspergillus japonicus using agro–industrial residues as support and nutrient source. Biochem Eng J 53:154–157

    CAS  Google Scholar 

  104. Mussatto SI, Aguilar CN, Rodrigues L, Teixeira JA (2009) Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydr Res 344:795–800

    CAS  PubMed  Google Scholar 

  105. Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA (2009a) Fructooligosaccharides and β–fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J Mol Catal B Enzym 59:76–81

    CAS  Google Scholar 

  106. Mussatto SI, Prata MB, Rodrigues LR, Teixeira JA (2012) Production of fructooligosaccharides and β–fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. Eur Food Res Technol 235:13–22

    CAS  Google Scholar 

  107. Mutanda T, Mokoena MP, Olaniran AO, Wilhelmi BS, Whiteley CG (2014) Microbial enzymatic production and applications of short–chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. J Ind Microbiol Biotechnol 41:893–906

    CAS  PubMed  Google Scholar 

  108. Mysore NR, Shivakumara M, Sangeetha P, Prapulla S, Prakash M. (2005). Process for preparation of fructooligosaccharides (FOS). US Patent No 10/809811

  109. Nakamura H, Nakane A, Kubota H (2008) Beta–fructofuranosidase variants U S Patent No 2008/0187970

  110. Nakao SI (1994) Determination of pore size and pore size distribution: 3. Filtration membranes. J Membr Sci 96:131–165

    CAS  Google Scholar 

  111. Nemukula A, Mutanda T, Wilhelmi BS, Whiteley CG (2009) Response surface methodology: synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Bioresour Technol 100:2040–2045

    CAS  PubMed  Google Scholar 

  112. Niness K (1999) Breakfast foods and the health benefits of inulin and oligofructose. Cereal Foods World 44:79–81

    Google Scholar 

  113. Nishizawa K, Nakajima M, Nabetani H (2001) Kinetic study on transfructosylation by β–fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Sci Technol Res 7:39–44

    CAS  Google Scholar 

  114. Nguyen QD, Mattes F, Hoschke A, Rezessy-Szabó J, Bhat MK (1999) Production, purification and identification of fructooligosaccharides produced by β-fructofuranosidase from Aspergillus niger IMI 303386. Biotechnol Lett 21:183–186

  115. Nobre C, Teixeira JA, Rodrigues LR (2012) Fructo–oligosaccharides purification from a fermentative broth using an activated charcoal column. New Biotech 29:395–401

    CAS  Google Scholar 

  116. Nobre CC, Hantson AL, Teixeira JA, De Weireld G, Rodrigues LR (2016) Strategies for the production of high-content fructo-oligosaccharides through the removal of small saccharides by co–culture or successive fermentation with yeast. Carbohydr Polym 136:274–281

    CAS  PubMed  Google Scholar 

  117. Nobre C, Alves Filho EG, Fernandes FA, Brito ES, Rodrigues S, Teixeira JA, Rodrigues LR (2018a) Production of fructo–oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT–Food Sci Technol 89:58–64

    CAS  Google Scholar 

  118. Nobre C, Gonçalves DA, Teixeira JA, Rodrigues LR (2018b) One-step co-culture fermentation strategy to produce high-content fructo-oligosaccharides. Carbohydr Polym 201:31–38

    CAS  PubMed  Google Scholar 

  119. Nobre C, Caitanodo AK, Pires S, Coelho E, Coimbra MA, Holanda MT, Teixeira JA, Figueiredo AL (2019) Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum. Bioresour Technol 282:464–474

    CAS  PubMed  Google Scholar 

  120. Ohta Y, Hatada Y, Hidaka Y, Shimane Y, Usui K, Ito T, Fujita K, Yokoi G, Mori M, Sato S, Miyazaki T, Nishikawa A, Tonozuka T (2014) Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β–fructofuranosidases. Appl Environ Microbiol 98:6667–6677

    CAS  Google Scholar 

  121. Olesen M, Gudmand-Høyer E (2000) Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am J Clin Nutr 72:1570–1575

    CAS  PubMed  Google Scholar 

  122. Olvera C, Castillo E, López-Munguía A (2007) Fructosiltransferasas, fructanas y fructosa. Biotecnología 14:327–345

    Google Scholar 

  123. Özbek B, Ülgen KÖ (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043

    Google Scholar 

  124. Paineau D, Respondek F, Menet V, Sauvage R, Bornet F, Wagner A (2014) Effects of short–chain fructooligosaccharides on faecal bifidobacteria and specific immune response in formula–fed term infants: a randomized, double–blind, placebo–controlled trial. J Nutr Sci Vitamino l60:167–175

    Google Scholar 

  125. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I–bioprocesses and products. Process Biochem 35:1153–1169

    CAS  Google Scholar 

  126. Panesar PS, Bali V (2016). Prebiotics. In: Encyclopedia of food and health. Elsevier. pp. 464–471

  127. Pérez-Cruz ER, Hernández-García L, Martínez-García D, Trujillo-Toledo LE, Menéndez-Rodríguez C, Sobrino-Legón A, Ramírez-Ibañez R, Feijoo-Costa G, Lema-Rodicio JML (2017) Method for obtaining 1–kestose. Australian Patent No 2017221776

  128. Pfaltzgraff LA, De Bruyn M, Cooper EC, Budarin V, Clark JH (2013) Food waste biomass: a resource for high–value chemicals. Green Chem 15:307–314

    CAS  Google Scholar 

  129. Prata MB, Mussatto SI, Rodrigues LR, Teixeira JA (2010) Fructooligosaccharide production by Penicillium expansum. Biotechnol Lett 32:837–840

    CAS  PubMed  Google Scholar 

  130. Qiang X, YongLie C, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77:435–441

    Google Scholar 

  131. Ramos P, Vicente AA, Teixeira JA (2013) Biotechnology–derived enzymes for food applications. In: Teixeira JA, Vicente AA (eds) Engineering aspects of food biotechnology. CRC Press, pp 3–20

  132. Rivero-Urgëll M, Santamaría-Orleans A (2001) Oligosaccharides: application in infant food. Early Hum Dev 65:43–52

  133. Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830–837

    Google Scholar 

  134. Roberfroid MB, Delzenne NM (1998) Dietary fructans. Annu Rev Nutr 18:117–143

    CAS  PubMed  Google Scholar 

  135. Rocha O, Nobre C, Domínguez A et al (2009) A dynamical model for the fermentative production of fructooligosaccharides. Comput Aided Chem Eng 27:1827–1832

  136. Rodríguez-González JA, Arrizón JP, Amaya-Delgado L, Ordaz LE (2017) Fructooligosaccharides production process from sucrose by using yeast permeated cells of the candida genus. Patent MX 2015014004

  137. Rols JL, Goma G (1989) Enhancement of oxygen transfer rates in fermentation using oxygen–vectors. Biotechnol Adv 7:1–14

    CAS  PubMed  Google Scholar 

  138. Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field. LWT–Food Sci Technol 50:1–16

    CAS  Google Scholar 

  139. Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. Physiol Biochem 65:315–328

    CAS  Google Scholar 

  140. Sánchez O, Guio F, García D, Silva E, Caicedo L (2008) Fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. Food Bioprod Process 86:109–115

  141. Sánchez OF, Rodríguez AM, Silva E, Caicedo LA (2010) Sucrose biotransformation to fructooligosaccharides by Aspergillus sp. N74 free cells. Food Bioprocess Tech 3:662–673

  142. Sangeetha PT, Ramesh MN, Prapulla SG (2004a) Production of fructo–oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochem 39:755–760

    Google Scholar 

  143. Sangeetha PT, Ramesh MN, Prapulla SG (2004b) Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid−state fermentation using agricultural by−products. Appl Microbiol Biotechnol 65:530–537

    CAS  PubMed  Google Scholar 

  144. Sangeetha PT, Ramesh MN, Prapulla SG (2005a) Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem 40:1085–1088

    CAS  Google Scholar 

  145. Sangeetha PT, Ramesh MN, Prapulla SG (2005b) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    CAS  Google Scholar 

  146. Schaepertoens M, Didaskalou C, Kim JF, Livingston AG, Szekely G (2016) Solvent recycle with imperfect membranes: a semi–continuous workaround for diafiltration. J Membr Sci 514:646–658

    CAS  Google Scholar 

  147. Schirmer C, Nussbaumer T, Schöb R, Pörtner R, Eibl R, Eibl D (2018) Development, engineering and biological characterization of stirred tank bioreactors. In: Yeh M-K, Chen Y-C (eds) Biopharmaceuticals. InTechOpen, pp 87–107

  148. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Aζil Y, Glüer C-C, Schrezenmeir J (2007) Prebiotics, probiotics and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137:838–846

    Google Scholar 

  149. Schorsch J, Kinnaert M, Fekih-Salem R et al (2018) Identification and optimal control of fructo−oligosaccharide production. IFAC−PapersOnLine 51:678–683

    Google Scholar 

  150. Schorsch J, Castro CC, Couto LD et al (2019) Optimal control for fermentative production of fructo−oligosaccharides in fed−batch bioreactor. J Process Control 78:124–138

    CAS  Google Scholar 

  151. Šedová M, Illeová V, Antošová M, Annus J, Polakovič M (2014) Production of fructosyltransferase in mechanically stirred and air–lift bioreactors. Chem Pap 68:1639–1648

    Google Scholar 

  152. Seo ES, Lee JH, Cho JY, So MY, Lee HS, Chang SS, Lee HJ, Choi JS, Kim D (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose. Biotechnol Bioprocess Eng 9:339–344

    CAS  Google Scholar 

  153. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  154. Sheu DC, Chang JY, Wang CY, Wu CT, Huang CJ (2013) Continuous production of high–purity fructooligosaccharides and ethanol by immobilized Aspergillus japonicus and Pichia heimii. Bioprocess Biosyst Eng 36:1745–1751

    CAS  PubMed  Google Scholar 

  155. Shin HT, Baig SY, Lee SW, Suh DS, Kwon ST, Lim YB, Lee JH (2004) Production of fructo–oligosaccharides from molasses by Aureobasidium pullulans cells. Bioresour Technol 93:59–62

    CAS  PubMed  Google Scholar 

  156. Singh RS, Singh RP (2010) Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol Biotechnol 48:435–450

    CAS  Google Scholar 

  157. Singhania RR, Patel AK, Pandey A (2010) The industrial production of enzymes. In: Soetaert W, Vandamme, EJ. (Eds.), Industrial biotechnology: sustainable growth and economic success. Wiley–VCH. pp. 207–225

  158. Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance—a review. Appetite 51:456–467

    Google Scholar 

  159. Smith JA, Luenser SJ (1982) Process for the production of fructose transferase enzyme. US Patent No 4,309,505

  160. Sosa JGA, Garcia LH, Gonzalez AC, Sosa GSH (1997) Fructosyltransferase enzyme, method for its production and DNA encoding the enzyme. US Patent No 5,641,667

  161. Spohner SC, Czermak P (2016) Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis. New Biotechnol 33:473–479

    CAS  Google Scholar 

  162. Tanriseven A, Aslan Y (2005) Immobilization of Pectinex Ultra SP–L to produce fructooligosaccharides. Enzym Microb Technol 36:550–554

    CAS  Google Scholar 

  163. Tashiro Y, Ueno H, Takaba M, Hayashi S (2017) Production of functional inulin–type fructooligosaccharides by an enzyme from Penicillium citrinum. Curr Microbiol 74:1114–1117

    CAS  PubMed  Google Scholar 

  164. Thomas L, Larroche C, Pandey A (2013) Current developments in solid–state fermentation. Biochem Eng J 81:146–161

    CAS  Google Scholar 

  165. Tomotani EJ, Vitolo M (2007) Production of high–fructose syrup using immobilized invertase in a membrane reactor. J Food Eng 80:662–667

    CAS  Google Scholar 

  166. Toyota K, Ohara H (2016) Production method for fructooligosaccharides. US Patent No 2016/0273008

  167. Trollope KM, Gorgens JF, Volschenka H (2015) Semirational directed evolution of loop regions in Aspergillus japonicus β–fructofuranosidase for improved fructooligosaccharide production. Appl Environ Microbiol 20:7319–7329

    Google Scholar 

  168. Trollope K, Volschenk H, Gorgens JF, Coetzee G (2017) A modified beta–fructofuranosidase for fructooligosaccharide production. U.S. Patent Application No. 15/516,372

  169. Trujillo-Toledo LE, Martínez-García D, Pérez-Cruz E et al (2019) Fructosyltransferases and invertases: useful enzymes in the food and feed industries. In: Kuddus M (ed) Enzymes in food biotechnology. Elsevier, pp 451–469

  170. Van Dooren TJ, Van Balken JA (1989) Fructosyl transferase and the preparation of fructose oligomers there with. US Patent No 4,849,356

  171. Van’t Riet K (1979) Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels. Ind Eng Chem Process Des Dev 18:357–364

    Google Scholar 

  172. Vandáková M, Platková Z, Antosová M, Báles V, Polakovic M (2004) Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chem Pap 58:15–22

    Google Scholar 

  173. Vaňková K, Polakovič M (2010) Optimization of single–column chromatographic separation of fructooligosaccharides. Process Biochem 45:1325–1329

    Google Scholar 

  174. Vaňková K, Onderková Z, Antošová M, Polakovič M (2008) Design and economics of industrial production of fructooligosaccharides. Chem Pap 62:375–381

    Google Scholar 

  175. Vargas LHM, Piao ACS, Domingos RN, Carmona EC (2004) Ultrasound effects on invertase from Aspergillus niger. World J Microbiol Biotechnol 20:137–142

    CAS  Google Scholar 

  176. Vega R, Zuniga-Hansen ME (2014) A new mechanism and kinetic model for the enzymatic synthesis of short–chain fructooligosaccharides from sucrose. Biochem Eng J 82:158–165

    CAS  Google Scholar 

  177. Vega R, Zuniga-Hansen ME (2015) The effect of processing conditions on the stability of fructooligosaccharides in acidic food products. Food Chem 173:784–789

    CAS  PubMed  Google Scholar 

  178. Vicentini A, Liberatore L, Mastrocola D (2016) Functional foods: trends and development of the global market. Ital J Food Sci 28:338–351

    Google Scholar 

  179. Vitolo M (2004) Invertase. In: Said S, Pietro RCLR (eds) Enzymes as biotechnological agents, Ribeirão Preto, pp 207–221

  180. Walton G, Gibson GR (2007) Prebiotics and bowel cancer. Curr Topics Nutraceut Res 5:19–28

    Google Scholar 

  181. Wang LM, Zhou HM (2006) Isolation and identification of a novel Aspergillus japonicus JN19 producing β-fructofuranosidase and characterization of the enzyme. J Food Biochem 30:641–658

    Google Scholar 

  182. Wang S, Duan M, Liu Y, Fan S, Lin X, Zhang Y (2017) Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. Biotechnol Lett 39:391–396

    CAS  PubMed  Google Scholar 

  183. Ward OP (1989) Biotecnología de la fermentación: principios, procesos y productos. Acribia

  184. Wei Y, Xie Q, Yao P (2001) Production process of cane–fruit oligosaccharide with immobilized fructose–base transferase. Chinese Patent No 1,335,402

  185. Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2006) Multiple β–fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiol Lett 265:159–163

    CAS  PubMed  Google Scholar 

  186. Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2008) Production of fructooligosaccharides by crude enzyme preparations of β–fructofuranosidase from Aureobasidium pullulans. Biotechnol Lett 30:535–539

    CAS  PubMed  Google Scholar 

  187. Yun JW, Song SK (1993) The production of high−content fructo−oligosaccharides from sucrose by the mixed−enzyme system of fructosyltransferase and glucose oxidase. Biotechnol Lett 15:573–576

    CAS  Google Scholar 

  188. Yun JW, Song SK (1996) Continuous production of fructooligosaccharides using fructosyltransferase immobilized on ion exchange resin. Biotechnol Bioprocess Eng 1:18–21

    Google Scholar 

  189. Yun JW, Jung KH, Oh JW, Lee H (1990) Semibatch production of fructo–oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. Appl Biochem Biotechnol 24:299–308

    Google Scholar 

  190. Yun JW, Kim DH, Song SK (1997) Enhanced production of fructosyltransferase and glucosyltransferase by substrate−feeding cultures of Aureobasidium pullulans. J Biosci Bioeng 84:261–263

    CAS  Google Scholar 

  191. Zambelli P, Serra I, Fernández-Arrojo L, Plou FJ, Tamborini L, Conti P, Contente ML, Molinari F, Romano D (2015) Sweet–and–salty biocatalysis: fructooligosaccharides production using Cladosporium cladosporioides in seawater. Process Biochem 50:1086–1090

  192. Zambelli P, Tamborini L, Cazzamalli S, Pinto A, Arioli S, Balzaretti S, Plou FJ, Fernández-Arrojo L, Molinari F, Conti P, Romano D (2016) An efficient continuous flow process for the synthesis of a non–conventional mixture of fructooligosacharides. Food Chem 190:607–613

    CAS  PubMed  Google Scholar 

  193. Zeng XA, Zhou K, Liu DM, Brennan CS, Brennan M, Zhou JS, Yu SJ (2016) Preparation of fructooligosaccharides using Aspergillus niger 6640 whole–cell as catalyst for bio–transformation. LWT–Food Sci Technol 65:1072–1079

    CAS  Google Scholar 

  194. Zhang C (2016) Aureobasidium pullulans AP172–1B and method for producing fructo–oligosaccharide by virtue of Aureobasidium pullulans. Chinese Patent No 10,552,487

  195. Zhang J, Liu C, Xie Y, Li N, Ning Z, Du N, Huang X, Zhong Y (2017) Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol 249:25–33

    CAS  PubMed  Google Scholar 

  196. Zhang S, Jiang H, Xue S, Ge N, Sun Y, Chi Z, Liu G, Chi Z (2019a) Efficient conversion of cane molasses into FOSs by a glucose derepression mutant of Aureobasidium melanogenum with high β-fructofuranosidasem activity. J Agric Food Chem 67:13665–13672

    CAS  PubMed  Google Scholar 

  197. Zhang Y, Geary T, Simpson BK (2019b) Genetically modified food enzymes: a review. Curr Opin Food Sci 25:14–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio López-Gómez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Martínez, M.J., Soto-Jover, S., Antolinos, V. et al. Manufacturing of Short-Chain Fructooligosaccharides: from Laboratory to Industrial Scale. Food Eng Rev 12, 149–172 (2020). https://doi.org/10.1007/s12393-020-09209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09209-0

Keywords

Navigation