Skip to main content
Log in

Copepod Assemblage Dynamics in a Snowmelt-Dominated Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

What limits secondary production in the estuaries of snowmelt-dominated basins? Due to substantial differences in their annual hydrographs, zooplankton dynamics in these estuaries are expected to differ from better-studied pluvial systems. We hypothesized that water residence time limited zooplankton production in the undammed, snowmelt-dominated estuary of the Fraser River, Canada. We sampled zooplankton and associated environmental variables bi-weekly to monthly in slough and channel areas of the estuary over a 33-month period. Annual mean copepod abundance at channel stations was low (2005 ± 238 ind. m−3) in comparison to other studied estuaries, with minima occurring during spring, concurrent with the freshet. Higher abundances (11,905 ± 3606 ind. m−3) observed at slough stations were attributed to estuarine copepods. Differences in abundance and species composition between slough and channel areas, and the coincidence of seasonal minima with the freshet, suggest that the low water residence time of this system limits zooplankton density and production. Heavy channelization of the Fraser River Estuary has further reduced water residence time in the estuary, likely affecting prey availability to fish and invertebrate predators. Given that peak river discharge in snowmelt-dominated basins occurs during the relatively short spring-summer growing season, the impacts of channelization on zooplankton production in the estuaries of snowmelt-dominated basins may be greater than in river-dominated estuaries subjected to different flow regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas, M.F. 2015. Ecological study of zooplankton in the Shatt Al-Basrah canal, Basrah-Iraq. Mesopotamian Journal of Marine Science 30 (1): 67–80.

    Google Scholar 

  • Abo-Taleb, H. 2014. Zooplankton in the Mediterranean Sea and the River Nile, Egypt: dynamics of zooplankton community in the connection between the Mediterranean Sea and the River Nile at Rosetta Branch, Egypt. Germany: LAP LAMBERT Academic Publishing. https://doi.org/10.13140/2.1.4133.7928.

    Book  Google Scholar 

  • Abu Hena, M.K., B. Japar Sidik, M.H. Idris, I. Johan, N.H. Nesarul, A. Aysha, and M.S. Islam. 2016. Seasonal distribution of zooplankton composition and abundance in a sub-tropical mangrove and salt marsh estuary. Malaysian Journal of Science 35 (2): 275–289.

    Google Scholar 

  • Abramova, E., and K. Tuschling. 2005. A 12-year study of the seasonal and interannual dynamics of mesozooplankton in the Laptev Sea: significance of salinity regime and life cycle patterns. Global and Planetary Change 48: 141–164.

    Google Scholar 

  • Ages, A., and A. Woollard. 1988. Tracking a pollutant in the lower Fraser River: a computer simulation. Water Pollution Research Journal of Canada 23: 122–140.

    CAS  Google Scholar 

  • Ambler, J.W., J.E. Cloern, and A. Hutchinson. 1985. Seasonal cycles of zooplankton from San Francisco Bay. Hydrobiologia 129: 177–197. https://doi.org/10.1007/BF00048694.

    Article  Google Scholar 

  • Ara, K. 2004. Temporal variability and production of the planktonic copepod community in the Cananéia Lagoon Estuarine System, São Paulo, Brazil. Zoological Studies 43: 179–186.

    Google Scholar 

  • Araujo, H.M.P., D.A. Nascimento-Vieira, S. Neumann-Leitão, R. Schwamborn, A.P.O. Lucas, and J.P.H. Alves. 2008. Zooplankton community dynamics in relation to the seasonal cycle and nutrient inputs in an urban tropical estuary in Brazil. Revista Brasleira De Biologia 68 (4): 751–762.

    CAS  Google Scholar 

  • Ban, S. 1992. Effects of photoperiod, temperature, and population density on induction of diapause egg production in Eurytemora affinis (Copepoda: Calanoida) in Lake Ohnuma, Hokkaido, Japan. Journal of Crustacean Biology 12: 361–367. https://doi.org/10.2307/1549029.

    Article  Google Scholar 

  • Ban, S. 1994. Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. Journal of Plankton Research 16: 721–735. https://doi.org/10.1093/plankt/16.6.721.

    Article  Google Scholar 

  • Barton, K. 2019. MuMIn: Multi-Model Inference (R package version 1.43.6).

  • Basu, B.K., and F.R. Pick. 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.

    CAS  Google Scholar 

  • Beamish, R.J., C.-E.M. Neville, B.L. Thomson, P.J. Harrison, and M.St. John. 1994. A relationship between Fraser River discharge and interannual production of Pacific salmon (Oncorhynchus spp.) and Pacific herring (Clupea pallasi) in the Strait of Georgia. Canadian Journal of Fisheries and Aquatic Sciences 51: 2843–2855. https://doi.org/10.1139/f94-283.

    Article  Google Scholar 

  • Birtwell, I.K., M.D. Nassichuk, and H. Beune. 1987. Underyearling sockeye salmon (Oncorhynchus nerka) in the estuary of the Fraser River. In Sockeye salmon (Oncorhynchus nerka) population biology and future management, vol. 96, 25–35.

    Google Scholar 

  • Bollens, S.M., J.K. Breckenridge, J.R. Cordell, G. Rollwagen-Bollens, and O. Kalata. 2012. Invasive copepods in the Lower Columbia River Estuary: seasonal abundance, co-occurrence and potential competition with native copepods. Aquatic Invasions 7: 101–109. https://doi.org/10.3391/ai.2012.7.1.011.

  • Bollens, S.M., J.K. Breckenridge, J.R. Cordell, C.A. Simenstad, and O. Kalata. 2014. Zooplankton of tidal marsh channels in relation to environmental variables in the upper San Francisco Estuary. Aquatic Biology. https://doi.org/10.3354/ab00589.

  • Bollens, S.M., J.K. Breckenridge, R.C. Vanden Hooff, and J.R. Cordell. 2011. Mesozooplankton of the lower San Francisco Estuary: spatio-temporal patterns, ENSO effects and the prevalence of non-indigenous species. Journal of Plankton Research 33: 1358–1377. https://doi.org/10.1093/plankt/fbr034.

    Article  Google Scholar 

  • Bottom D., C. Simenstad, J. Burke, A. Baptista, D. Jay, K. Jones, E. Casillas, and M. Schiewe. 2005. Salmon at river’s end: the role of the estuary in the decline and recovery of Columbia River salmon. NMFS-NWFSC-68. NOAA Technical Memorandum. U.S. Dept. Commer.

  • Bravender, B.A., C.D. Levings, and T.J. Brown. 1993. A comparison of meiofauna available as fish food on Sturgeon and Roberts Banks, Fraser River Estuary, British Columbia. 1904. Canadian Technical Report of Fisheries and Aquatic Sciences. Department of Fisheries and Oceans.

  • Breckenridge, J.K., S.M. Bollens, G. Rollwagen-Bollens, and G.C. Roegner. 2015. Plankton assemblage variability in a river-dominated temperate estuary during late spring (high-flow) and late summer (low-flow) periods. Estuaries and Coasts 38 (1): 93–103. https://doi.org/10.1007/s12237-014-9820-7.

    Article  CAS  Google Scholar 

  • Brugnoli-Olivera, E., E. Díaz-Ferguson, M. Delfino-Machin, A. Morales-Ramírez, and A.D. Arosemena. 2004. Composition of the zooplankton community, with emphasis in copepods, in Punta Morales, Golfo De Nicoya, Costa Rica. Revista De Biologia Tropical 52 (4): 897–902.

    Google Scholar 

  • Buskey, E.J. 1993. Annual pattern of micro- and mesozooplankton abundance and biomass in a subtropical estuary. Journal of Plankton Research 15: 907–924. https://doi.org/10.1093/plankt/15.8.907.

    Article  Google Scholar 

  • Butler, R.W., and R.W. Campbell. 1988. The birds of the Fraser River delta: populations, ecology and international significance. 65. Occasional Paper No. 65 Canadian Wildlife Service.

  • Champalbert, G., M. Pagano, P. Sene, and D. Corbin. 2007. Relationships between meso- and macro-zooplankton communities and hydrology in the Senegal River Estuary. Estuarine, Coastal and Shelf Science 74: 381–394. https://doi.org/10.1016/j.ecss.2007.04.023.

    Article  Google Scholar 

  • Chiba, S., S.D. Batten, T. Yoshiki, Y. Sasaki, K. Sasaoka, H. Sugisaki, and T. Ichikawa. 2015. Temperature and zooplankton size structure: climate control and basin-scale comparison in the North Pacific. Ecology and Evolution 5 (4): 968–978. https://doi.org/10.1002/ece3.1408.

    Article  Google Scholar 

  • Church, M., and D.G. McLean. 1994. Sedimentation in lower Fraser River, British Columbia: Implications for management. In Variability in large Alluvial Rivers, ed. S. Schumm and B. Winkley, 221–241. New York: American Society of Civil Engineers Press.

    Google Scholar 

  • Clague, J.J., J.L. Luternauer, and R.J. Hebda. 1983. Sedimentary environments and postglacial history of the Fraser Delta and lower Fraser Valley, British Columbia. Canadian Journal of Earth Sciences 20: 1314–1326. https://doi.org/10.1139/e83-116.

    Article  Google Scholar 

  • Conway, D.V.P. 2006. Identification of the copepodite developmental stages of twenty-six North Atlantic copepods. Occasional Publications. Vol. 21. Marine Biological Association of the United Kingdom.

  • Cordell, J., O. Kalata, A. Pleus, A. Newsom, K. Strieck, and G. Gertsen. 2015. Effectiveness of ballast water exchange in protecting Puget Sound from invasive species. Washington Department of Fish and Wildlife. https://wdfw.wa.gov/publications/01710. Accessed 7 Jan 2020.

  • Cordell, J.R., C.A. Morgan, and C.A. Simenstad. 1992. Occurrence of the Asian calanoid copepod Pseudodiaptomus inopinus in the zooplankton of the Columbia River Estuary. Journal of Crustacean Biology 12: 260–269. https://doi.org/10.2307/1549079.

  • Culver, D.A., M.M. Boucherle, D.J. Bean, and J.W. Fletcher. 1985. Biomass of freshwater crustacean zooplankton from length–weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380–1390. https://doi.org/10.1139/f85-173.

    Article  Google Scholar 

  • Dauvin, J.-C., and N. Desroy. 2005. The food web in the lower part of the Seine estuary: a synthesis of existing knowledge. Hydrobiologia 540 (1-3): 13–27. https://doi.org/10.1007/s10750-004-7101-3.

    Article  Google Scholar 

  • David, V., B. Sautour, R. Galois, and P. Chardy. 2006. The paradox high zooplankton biomass–low vegetal particulate organic matter in high turbidity zones: what way for energy transfer? Journal of Experimental Marine Biology and Ecology 333: 202–218. https://doi.org/10.1016/j.jembe.2005.12.045.

    Article  Google Scholar 

  • David, V., J. Selleslagh, A. Nowaczyk, S. Dubois, G. Bachelet, H. Blanchet, B. Gouillieux, et al. 2016. Estuarine habitats structure zooplankton communities: implications for the pelagic trophic pathways. Estuarine, Coastal and Shelf Science 179. Special Issue: Functioning and dysfunctioning of marine and brackish ecosystems: 99–111. https://doi.org/10.1016/j.ecss.2016.01.022.

  • Deevey, G.B. 1956. Oceanography of Long Island Sound, 1952-1954. V. Zooplankton. Bulletin of the Bingham Oceanographic Collection 15: 113–155.

  • Department of Fisheries and Oceans. 1998. Fraser River salmon summary, 16p. Vancouver, B.C.: Fraser River Action Plan, Fishery Management Group.

    Google Scholar 

  • Devreker, D., S. Souissi, J.C. Molinero, D. Beyrend-Dur, F. Gomez, and J. Forget-Leray. 2010. Tidal and annual variability of the population structure of Eurytemora affinis in the middle part of the Seine Estuary during 2005. Estuarine, Coastal and Shelf Science 89: 245–255. https://doi.org/10.1016/j.ecss.2010.07.010.

    Article  CAS  Google Scholar 

  • DiBacco, C., D.B. Humphrey, L.E. Nasmith, and C.D. Levings. 2012. Ballast water transport of non-indigenous zooplankton to Canadian ports. ICES Journal of Marine Science 69: 483–491. https://doi.org/10.1093/icesjms/fsr133.

    Article  Google Scholar 

  • Dower, J.F., T.J. Miller, and W.C. Leggett. 1997. The role of microscale turbulence in the feeding ecology of larval fish. In Advances in marine biology, ed. J.H.S. Blaxter and A.J. Southward, vol. 31, 169–220. Academic Press. https://doi.org/10.1016/S0065-2881(08)60223-0.

  • Duggan, S., A.D. McKinnon, and J.H. Carleton. 2008. Zooplankton in an Australian tropical estuary. Estuaries and Coasts 31 (2): 455–467. https://doi.org/10.1007/s12237-007-9011-x.

    Article  Google Scholar 

  • Dumont, H.J., I. Van de Velde, and S. Dumont. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–79.

    Google Scholar 

  • Dunford, W.E. 1975. Space and food utilization by salmonids in marsh habitats of the Fraser River Estuary. Master’s thesis, Vancouver, B.C: University of British Columbia.

  • Elliot, M., and A.K. Whitfield. 2011. Challenging paradigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science 94: 306–314.

    Google Scholar 

  • Erlenkeuser, H., H.H. Cordt, J. Simstich, D. Bauch, and R.F. Spielhagen. 2003. DIC stable carbon isotope pattern in the surface waters of the southern Kara Sea, Sep. 2000. In Siberian river run-off in the Kara Sea. Proc. Mar. Sci., eds. R. Stein, K. Fahl, D.K. Fütterer, E.M. Galimov, and O.V. Stepanets, vol. 6, 91–100. Amsterdam: Elsevier.

  • Escaravage, V., and K. Soetaert. 1993. Estimating secondary production for the brackish Westerschelde copepod population Eurytemora affinis (Poppe) combining experimental data and field observations. Cahiers de Biologie Marine 34: 201–214.

    Google Scholar 

  • Escaravage, V., and K. Soetaert. 1995. Secondary production of the brackish copepod communities and their contribution to the carbon fluxes in the Westerschelde estuary (the Netherlands). Hydrobiologia 311: 103–114.

    Google Scholar 

  • Eskinazi-Sant’Anna, E.M., and J.G. Tundisi. 1996. Zooplâncton do estuário do Pina (Recife-Pernambuco-Brasil): composição e distribuição temporal. Revista Brasiliera Oceanografia 44: 23–33.

    Google Scholar 

  • Evans, M.S., and E.H. Grainger. 1980. Zooplankton in a Canadian Arctic Estuary. In Estuarine perspectives, ed. V.S. Kennedy, 199–210. New York: Academic Press.

  • Ferrari, F.D., and J. Orsi. 1984. Oithona davisae, new species, and Limnoithona sinensis (Burckhardt, 1912) (Copepoda: Oithonidae) from the Sacramento-San Joaquin Estuary, California. Journal of Crustacean Biology 4: 106–126. https://doi.org/10.2307/1547900.

    Article  Google Scholar 

  • Fulton, R.S. 1984. Distribution and community structure of estuarine copepods. Estuaries 7: 38. https://doi.org/10.2307/1351955.

    Article  Google Scholar 

  • Gao, Q., Z. Xu, and P. Zhuang. 2008. The relation between distribution of zooplankton and salinity in the Changjiang Estuary. Chinese Journal of Oceanology and Limnology 26 (2): 178–185. https://doi.org/10.1007/s00343-008-0178-1.

    Article  Google Scholar 

  • Gardner, G. A., and I. Szabo. 1982. British Columbia pelagic marine copepoda: an identification manual and annotated bibliography. Canadian Special Publication of Fisheries and Aquatic Sciences 62. Ottawa: Dept. of Fisheries and Oceans.

  • Geyer, W.R., and D.M. Farmer. 1989. Time-induced variation of the dynamics of a salt-wedge estuary. Journal of Physical Oceanography 19: 1060–1072.

    Google Scholar 

  • Gillanders, B.M., and M.J. Kingsford. 2002. Impact of changes in flow of freshwater on estuarine and open coastal habitats and the associated organisms. Oceanography and Marine Biology: An Annual Review 40: 233–309.

    Google Scholar 

  • Gupta, S.J., D.J. Lonsdale, and D.P. Wang. 1994. The recruitment patterns of an estuarine copepod—a biological-physical model. Journal of Marine Research 52: 687–710. https://doi.org/10.1357/0022240943076966.

    Article  Google Scholar 

  • Haertel, L., and C. Osterberg. 1967. Ecology of zooplankton, benthos and fishes in the Columbia River Estuary. Ecology 48: 459–472. https://doi.org/10.2307/1932681.

    Article  Google Scholar 

  • Haertel, L., C. Osterberg, H. Curl, and P.K. Park. 1969. Nutrient and plankton ecology of the Columbia River Estuary. Ecology 50: 962–978. https://doi.org/10.2307/1936889.

    Article  CAS  Google Scholar 

  • Hawkins, B.E., and M.S. Evans. 1979. Seasonal cycles of zooplankton biomass in southeastern Lake Michigan. Journal of Great Lakes Research 5: 256–263. https://doi.org/10.1016/S0380-1330(79)72152-6.

    Article  Google Scholar 

  • Healey, M.C. 1982. Juvenile Pacific salmon in estuaries: the life support system. In Estuarine comparisons, ed. V.S. Kennedy, 315–341. Academic Press. https://doi.org/10.1016/B978-0-12-404070-0.50025-9.

  • Heinle, D.R. 1972. Free-living Copepoda of the Chesapeake Bay. Chesapeake Science 13: 4.

    Google Scholar 

  • Heinle, D.R., and D.A. Flemer. 1975. Carbon requirements of a population of the estuarine copepod Eurytemora affinis. Marine Biology 31: 235–247.

    Google Scholar 

  • Hillgruber, N., and C.E. Zimmerman. 2009. Estuarine ecology of juvenile salmon in western Alaska: a review. American Fisheries Society Symposium 70: 183–199.

    Google Scholar 

  • Hirst, A.G., J.C. Roff, and R.S. Lampitt. 2003. A synthesis of growth rates in marine epipelagic invertebrate zooplankton. In Advances in marine biology, ed. A.J. Southward, P.A. Tyler, C.M. Young, and L.A. Fuiman, 1–142. Amsterdam: Elsevier.

    Google Scholar 

  • Hopkins, T.L. 1966. Plankton of the St Andrews Bay system, Florida. Publications of the Institute of Marine Science 11: 12–64.

    Google Scholar 

  • Hopkins, T.L. 1977. Zooplankton distribution in surface waters of Tampa Bay, Florida. Bulletin of Marine Science 27: 467–478.

    Google Scholar 

  • Hulsizer, E.E. 1976. Zooplankton of lower Narragansett Bay, 1972–1973. Chesapeake Science 17 (4): 260–270. https://doi.org/10.2307/1350513.

    Article  Google Scholar 

  • Huntley, M.E., and M.D.G. Lopez. 1992. Temperature-dependent production of marine copepods—a global synthesis. American Naturalist 140 (2): 201–242. https://doi.org/10.1086/285410.

    Article  CAS  Google Scholar 

  • Ikeda, T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Marine Biology 85: 1–11. https://doi.org/10.1007/BF00396409.

    Article  Google Scholar 

  • Islam, Md.S., H. Ueda, and M. Tanaka. 2006. Spatial and seasonal variations in copepod communities related to turbidity maximum along the Chikugo estuarine gradient in the upper Ariake Bay, Japan. Estuarine, Coastal and Shelf Science 68: 113–126. https://doi.org/10.1016/j.ecss.2006.02.002.

    Article  Google Scholar 

  • Jay, D.A., P.M. Orton, T. Chisholm, D.J. Wilson, and A.M.V. Fain. 2007. Particle trapping in stratified estuaries: application to observations. Estuaries and Coasts 30: 1106–1125.

    CAS  Google Scholar 

  • Johnston, N.T. 1981. The feeding ecology of Neomysis mercedis Holmes in Fraser River Estuary. Thesis: University of British Columbia.

    Google Scholar 

  • Kankaala, P., and S. Johansson. 1986. The influence of individual variation on length-biomass regressions in three crustacean zooplankton species. Journal of Plankton Research 8: 1027–1038. https://doi.org/10.1093/plankt/8.6.1027.

    Article  Google Scholar 

  • Kärnä, T., and A.M. Baptista. 2016. Water age in the Columbia River estuary. Estuarine, Coastal and Shelf Science 183: 249–259. https://doi.org/10.1016/j.ecss.2016.09.001.

  • Ketchum, B.H. 1954. Relation between circulation and planktonic populations in estuaries. Ecology 35: 191. https://doi.org/10.2307/1931117.

    Article  Google Scholar 

  • Kibirige, I., and R. Perissinotto. 2003. The zooplankton community of the Mpenjati Estuary, a South African temporarily open/closed system. Estuarine, Coastal and Shelf Science 58: 727–741. https://doi.org/10.1016/S0272-7714(03)00180-X.

    Article  Google Scholar 

  • Kimmel, D.G. 2011. Plankton consumer groups. In Treatise on estuarine and coastal science, eds. E. Wolanski and D.S. McLusky, 95–126. Waltham: Academic Press.

  • Kimmel, D.G., and M.R. Roman. 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input. Marine Ecology Progress Series 267: 71–83.

    Google Scholar 

  • Kimmerer, W.J. 2002. Effects of freshwater flow on abundance of estuarine organisms: physical effects or trophic linkages? Marine Ecology Progress Series 243: 39–55.

    Google Scholar 

  • Kimmerer, W.J., J.R. Burau, and W.A. Bennett. 1998. Tidally oriented vertical migration and position maintenance of zooplankton in a temperate estuary. Limnology and Oceanography 43: 1697–1709.

    Google Scholar 

  • Kiørboe, Thomas, and Torkel Gissel Nielsen. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnology and Oceanography 39: 493–507. https://doi.org/10.4319/lo.1994.39.3.0493.

    Article  Google Scholar 

  • Knatz, G. 1978. Succession of copepod species in a Middle Atlantic estuary. Estuaries 1: 68–71. https://doi.org/10.2307/1351655.

    Article  Google Scholar 

  • Köpcke, B. 2004. The importance of peripheral areas and mudflats for the maintenance of Eurytemora affinis (Poppe, 1880) (Copepoda; Crustacea) populations in the Elbe estuary. Archiv für Hydrobiologie Supplement 110: 329–443.

    Google Scholar 

  • Kostaschuk, R.A. 2002. Flow and sediment dynamics in migrating salinity intrusions: Fraser River estuary, Canada. Estuaries 25: 197–203.

    Google Scholar 

  • Kostaschuk, R.A., and L.A. Atwood. 1990. River discharge and tidal controls on salt-wedge position and implications for channel shoaling: Fraser River, British Columbia. Canadian Journal of Civil Engineering 17: 452–459.

    Google Scholar 

  • Lawrence, D., I. Valiela, and G. Tomasky. 2004. Estuarine calanoid copepod abundance in relation to season, salinity, and land-derived nitrogen loading, Waquoit Bay, MA. Estuarine, Coastal and Shelf Science 61: 547–557. https://doi.org/10.1016/j.ecss.2004.06.018.

    Article  CAS  Google Scholar 

  • Leandro, S.M., F. Morgado, F. Pereira, and H. Queiroga. 2007. Temporal changes of abundance, biomass and production of copepod community in a shallow temperate estuary (Ria de Aveiro, Portugal). Estuarine, Coastal and Shelf Science 74: 215–222. https://doi.org/10.1016/j.ecss.2007.04.009.

    Article  Google Scholar 

  • Lee, C. E. 2000. Global phylogeography of the cryptic copepod species complex and reproductive isolation among genetically proximate “populations.” Evolution 54: 2014–2027.

  • Lehman, C.L., and D. Tilman. 2000. Biodiversity, stability, and productivity in competitive communities. The American Naturalist 156 (5): 534–552. https://doi.org/10.1086/303402.

    Article  Google Scholar 

  • Levings, C.D., J.R. Cordell, S. Ong, and G.E. Piercey. 2004. The origin and identity of invertebrate organisms being transported to Canada’s Pacific coast by ballast water. Canadian Journal of Fisheries and Aquatic Sciences 61: 1–11. https://doi.org/10.1139/f03-135.

  • Levy, D.A., and T.G. Northcote. 1982. Juvenile salmon residency in a marsh area of the Fraser River estuary. Canadian Journal of Fisheries and Aquatic Sciences 39: 270–276.

    Google Scholar 

  • Li, K.Z., J.Q. Yin, L.M. Huang, and Y.H. Tan. 2006. Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuarine, Coastal and Shelf Science 67: 543–552. https://doi.org/10.1016/j.ecss.2005.12.008.

    Article  Google Scholar 

  • Livingston, R.J., X. Niu, F.G. Lewis, and G.C. Woodsum. 1997. Freshwater input to a gulf estuary: Long-term control of trophic organization. Ecological Applications 7 (1): 277–299.

    Google Scholar 

  • Lonsdale, D.J., and B.C. Coull. 1977. Composition and seasonality of zooplankton of North Inlet, South Carolina. Chesapeake Science 18: 272–283. https://doi.org/10.2307/1350801.

    Article  Google Scholar 

  • Macdonald, S., R.U. Kistritz, and M. Farrell. 1990. An examination of the effects of slough habitat reclamation in the lower Fraser River, British Columbia: detrital and invertebrate flux, rearing and diets of juvenile salmon. Canadian Technical Report of Fisheries and Aquatic Sciences. Department of Fisheries and Oceans No. 1731.

  • MacKenzie, B.R., and T. Kiørboe. 2000. Larval fish feeding and turbulence: a case for the downside. Limnology and Oceanography 45: 1–10. https://doi.org/10.4319/lo.2000.45.1.0001.

    Article  Google Scholar 

  • de Madariaga, I., L. González-Azpiri, F. Villate, and E. Orive. 1992. Plankton responses to hydrological changes induced by freshets in a shallow mesotidal estuary. Estuarine, Coastal and Shelf Science 35: 425–434. https://doi.org/10.1016/S0272-7714(05)80037-X.

    Article  Google Scholar 

  • Madhu, N.V., R. Jyothibabu, K.K. Balachandran, U.K. Honey, G.D. Martin, J.G. Vijay, C.A. Shiyas, G.V.M. Gupta, and C.T. Achuthankutty. 2007. Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin backwaters—India). Estuarine, Coastal and Shelf Science 73: 54–64. https://doi.org/10.1016/j.ecss.2006.12.009.

    Article  Google Scholar 

  • Mahjoub, M.-S., R. Kumar, S. Souissi, F.G. Schmitt, and J.-S. Hwang. 2012. Turbulence effects on the feeding dynamics in European sea bass (Dicentrarchus labrax) larvae. Journal of Experimental Marine Biology and Ecology 416–417: 61–67. https://doi.org/10.1016/j.jembe.2012.02.005.

    Article  Google Scholar 

  • Maier, G. 1994. Patterns of life history among cyclopoid copepods of central Europe. Freshwater Biology 31: 77–86. https://doi.org/10.1111/j.1365-2427.1994.tb00840.x.

    Article  Google Scholar 

  • Mallin, M.A. 1991. Zooplankton abundance and community structure in a mesohaline North Carolina estuary. Estuaries 14 (4): 481–488. https://doi.org/10.2307/1352271.

    Article  Google Scholar 

  • Mallin, M.A., and H.W. Paerl. 1994. Planktonic trophic transfer in an estuary: seasonal, diel, and community structure effects. Ecology 75: 2168–2184. https://doi.org/10.2307/1940875.

    Article  Google Scholar 

  • Margalef, R. 1969. Diversity and stability: a practical proposal and a model of interdependence. Brookhaven Symposia in Biology 22: 25–37.

    CAS  Google Scholar 

  • Maurer, D., L. Watling, R. Lambert, and A. Pembroke. 1978. Seasonal fluctuation of zooplankton populations in lower Delaware Bay. Hydrobiologia 61 (2): 149–160. https://doi.org/10.1007/BF00018746.

    Article  Google Scholar 

  • McCune, B., and M.J. Mefford. 2018. PC-ORD. Multivariate analysis of ecological data. (version 7.07).

  • McKinnon, A.D., and D.W. Klumpp. 1998. Mangrove zooplankton of North Queensland, Australia I. Plankton community structure and environment. Hydrobiologia 362: 127–143.

    Google Scholar 

  • McLaren, I.A., and C.J. Corkett. 1981. Temperature-dependent growth and production by a marine copepod. Canadian Journal of Fisheries and Aquatic Sciences 38: 77–83. https://doi.org/10.1139/f81-010.

    Article  Google Scholar 

  • Miller, M.P., D.D. Susong, C.L. Shope, V.M. Heilweil, and B.J. Stolp. 2014. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado Basin: a chemical hydrograph separation approach. Water Resources Research 50 (8): 6986–6999.

    CAS  Google Scholar 

  • Miller, C.B. 1983. The zooplankton of estuaries. In Estuaries and enclosed seas, ed. B.H. Ketchum, 103–149. Amsterdam: Elsevier.

    Google Scholar 

  • Miller, J.A., and C.A. Simenstad. 1997. A comparative assessment of a natural and created estuarine slough as rearing habitat for juvenile chinook and coho salmon. Estuaries 20 (4): 792–806. https://doi.org/10.2307/1352252.

    Article  Google Scholar 

  • Milliman, J.D. 1980. Sedimentation in the Fraser River and its estuary, southwestern British Columbia (Canada). Estuarine and Coastal Marine Science 10: 609–633. https://doi.org/10.1016/S0302-3524(80)80092-2.

    Article  Google Scholar 

  • Morgan, C.A., J.R. Cordell, and C.A. Simenstad. 1997. Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region. Marine Biology 129: 309–317.

    Google Scholar 

  • Morrison, J., M.C. Quick, and M.G.G. Foreman. 2002. Climate change in the Fraser River watershed: flow and temperature projections. Journal of Hydrology 263: 230–244.

    Google Scholar 

  • Moyle, P.B. 2008. The future of fish in response to large-scale change in the San Francisco Estuary, California. American Fisheries Society Symposium 64: 1–18.

    Google Scholar 

  • Murrell, M.C., and E.M. Lores. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. Journal of Plankton Research 26: 371–382. https://doi.org/10.1093/plankt/fbh038.

    Article  Google Scholar 

  • Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142.

    Google Scholar 

  • Nijssen, B., G.M. O’Donnell, A.F. Hamlet, and D.P. Lettenmaier. 2001. Hydrologic sensitivity of global rivers to climate change. Climatic Change 50: 143–175. https://doi.org/10.1023/A:1010616428763.

    Article  CAS  Google Scholar 

  • Northcote, T.G., N.T. Johnston, and K. Tsumura. 1976. Benthic, epibenthic and drift fauna of the lower Fraser River. Vancouver, B.C: Westwater Research Centre, University of British Columbia.

    Google Scholar 

  • Northcote, T.G., and P.A. Larkin. 1989. The Fraser River: a major salmonine production system. In Proceedings of the International Large River Symposium (LARS), ed. D.P. Dodge, 172–204. Canadian special publication of fisheries and aquatic sciences.

  • Odum, E.P. 1953. Fundamentals of ecology. Philadelphia: Saunders.

    Google Scholar 

  • Osgood, G.J., L.A. Kennedy, J.J. Holden, E. Hertz, S. McKinnell, and F. Juanes. 2016. Historical diets of forage fish and juvenile Pacific salmon in the Strait of Georgia, 1966–1968. Marine and Coastal Fisheries 8: 580–594. https://doi.org/10.1080/19425120.2016.1223231.

  • Park, G.S., and H.G. Marshall. 2000. Estuarine relationships between zooplankton community structure and trophic gradients. Journal of Plankton Research 22 (1): 121–136.

    Google Scholar 

  • Peitsch, A., B. Köpcke, and N. Bernát. 2000. Long-term investigation of the distribution of Eurytemora affinis (Calanoida; Copepoda) in the Elbe Estuary. Limnologica - Ecology and Management of Inland Waters 30: 175–182. https://doi.org/10.1016/S0075-9511(00)80013-4.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates, S. Debroy, D. Sarkar, and R Core Team. 2019. nlme: linear and nonlinear mixed effects models (R package version 3.1-139).

  • Port of Vancouver. 2017. Backgrounder: the Fraser River and future trade. https://www.portvancouver.com/wp-content/uploads/2017/05/2017-05-25-Backgrounder-Future-of-the-Fraser-River.pdf. Accessed 16 Aug 2019.

  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna: Austria https://www.R-project.org.

  • Rios-Jara, E. 1998. Spatial and temporal variations in the zooplankton community of Phosphorescent Bay, Puerto Rico. Estuarine, Coastal and Shelf Science 46: 797–809. https://doi.org/10.1006/ecss.1997.0289.

    Article  Google Scholar 

  • Roman, M.R., D.V. Holliday, and L.P. Sanford. 2001. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum. Marine Ecology Progress Series 213: 215–227. https://doi.org/10.3354/meps213215.

  • Runge, J.A. 1988. Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia 167–168: 61–71. https://doi.org/10.1007/BF00026294.

    Article  Google Scholar 

  • Sage, L.E., and S.S. Herman. 1972. Zooplankton of the Sandy Hook Bay Area, N. J. Chesapeake Science 13: 29–39. https://doi.org/10.2307/1350548.

    Article  Google Scholar 

  • Saiz, E., A. Calbet, and E. Broglio. 2003. Effects of small-scale turbulence on copepods: the case of Oithona davisae. Limnology and Oceanography 48: 1304–1311.

    Google Scholar 

  • Sautour, B., and J. Castel. 1995. Comparative spring distribution of zooplankton in three macrotidal European estuaries. Hydrobiologia 311: 139–151.

    Google Scholar 

  • Schlacher, T.A., and T.H. Wooldridge. 1996. Ecological responses to reductions in freshwater supply and quality in South Africa’s estuaries: lessons for management and conservation. Journal of Coastal Conservation 2: 115–130.

    Google Scholar 

  • Simenstad, C.A., L.F. Small, and D.C. McIntire. 1990. Consumption processes and food web structure in the Columbia River Estuary. Progress in Oceanography 25: 271–297. https://doi.org/10.1016/0079-6611(90)90010-Y.

    Article  Google Scholar 

  • Souza Júnior, A.N., A. Magalhães, L.C.C. Pereira, and R.M. Costa. 2013. Zooplankton dynamics in a tropical Amazon estuary. Journal of Coastal Research, Special Issue 65. Coastal Education and Research Foundation: 1230–1235

  • Stewart, I.T., D.R. Cayan, and M.D. Dettinger. 2004. Changes toward earlier streamflow timing across western North America. Journal of Climate 18 (8): 1136–1155.

    Google Scholar 

  • Strydom, N.A., K. Sutherland, and T.H. Wooldridge. 2014. Diet and prey selection in late-stage larvae of five species of fish in a temperate estuarine nursery. African Journal of Marine Science 36: 85–98. https://doi.org/10.2989/1814232X.2014.895420.

    Article  Google Scholar 

  • Sullivan, B.E., F.G. Prahl, L.F. Small, and P.A. Covert. 2001. Seasonality of phytoplankton production in the Columbia River: a natural or anthropogenic pattern? Geochimica et Cosmochimica Acta 65 (7): 1125–1139.

    CAS  Google Scholar 

  • Sun, D., Z. Liu, J. Zhang, C. Wang, and Q. Shao. 2016. Environmental control of mesozooplankton community structure in the Hangzhou Bay, China. Acta Oceanologica Sinica 35 (10): 96–106.

    CAS  Google Scholar 

  • Suzuki, Keita W., Kouji Nakayama, and Masaru Tanaka. 2013. Distinctive copepod community of the estuarine turbidity maximum: comparative observations in three macrotidal estuaries (Chikugo, Midori, and Kuma Rivers), southwestern Japan. Journal of Oceanography 69 (1): 15–33. https://doi.org/10.1007/s10872-012-0151-7.

  • Tackx, M.L.M. 2004. Zooplankton in the Schelde estuary, Belgium and The Netherlands. Spatial and temporal patterns. Journal of Plankton Research 26: 133–141. https://doi.org/10.1093/plankt/fbh016.

    Article  CAS  Google Scholar 

  • Tan, Y., L. Huang, Q. Chen, and X. Huang. 2004. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary, China. Continental Shelf Research 24. Pearl River Estuary Study: 1949–1968. https://doi.org/10.1016/j.csr.2004.06.018.

  • Thayer, G.W., D.E. Hoss, M.A. Kjelson, W.F. Hettler, and M.W. Lacroix. 1974. Biomass of zooplankton in the Newport River Estuary and the influence of Postlarval fishes. Chesapeake Science 15: 9. https://doi.org/10.2307/1350953.

    Article  Google Scholar 

  • Thomson, R.E. 1981. Oceanography of the British Columbia coast. Canadian special publication of fisheries and aquatic sciences 56. Ottawa: Dept. of Fisheries and Oceans.

    Google Scholar 

  • Turner, J.T. 1982. The annual cycle of zooplankton in a Long Island estuary. Estuaries 5: 261. https://doi.org/10.2307/1351749.

    Article  Google Scholar 

  • Ueda, H., A. Terao, M. Tanaka, M. Hibino, and Md.S. Islam. 2004. How can river-estuarine planktonic copepods survive river floods? Ecological Research 19 (6): 625–632. https://doi.org/10.1111/j.1440-1703.2004.00677.x.

    Article  Google Scholar 

  • Uye, S. 1991. Temperature-dependent development and growth of the planktonic copepod Paracalanus sp. in the laboratory. Bulletin of the Plankton Society of Japan 627–636.

  • Uye, S., and K. Sano. 1998. Seasonal variations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Marine Ecology Progress Series 163: 37–44. https://doi.org/10.3354/meps163037.

    Article  Google Scholar 

  • Uye, S., T. Shimazu, M. Yamamuro, Y. Ishitobi, and H. Kamiya. 2000. Geographical and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in Lake Shinji–Ohashi River–Lake Nakaumi brackish-water system, Japan. Journal of Marine Systems 26: 193–207. https://doi.org/10.1016/S0924-7963(00)00054-3.

    Article  Google Scholar 

  • Vidal, J. 1980. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Marine Biology 56: 111–134. https://doi.org/10.1007/BF00397129.

    Article  Google Scholar 

  • Vieira, L., U. Azeiteiro, P. Ré, R. Pastorinho, J.C. Marques, and F. Morgado. 2003. Zooplankton distribution in a temperate estuary (Mondego estuary southern arm: Western Portugal). Acta Oecologica 24. Proceedings of the Plankton Symposium, Espinho, Portugal: S163–S173. https://doi.org/10.1016/S1146-609X(03)00038-9.

  • Vincent, D., C. Luczak, and B. Sautour. 2002. Effects of a brief climatic event on zooplankton community structure and distribution in Arcachon Bay (France). Journal of the Marine Biological Association of the United Kingdom 82: 21–30. https://doi.org/10.1017/S0025315402005143.

    Article  Google Scholar 

  • Vinogradov, M.E., E.A. Shushkina, L.P. Lebedeva, and V.I. Gagarin. 1995. Mesoplankton in the east Kara Sea and the Ob and Yenisey River estuaries. Oceanology 34 (5): 653–660.

    Google Scholar 

  • Visser, A.W., H. Saito, E. Saiz, and T. Kiørboe. 2001. Observations of copepod feeding and vertical distribution under natural turbulent conditions in the North Sea. Marine Biology 138 (5): 1011–1019. https://doi.org/10.1007/s002270000520.

    Article  CAS  Google Scholar 

  • Wahl, D.H., J. Goodrich, M.A. Nannini, J.M. Dettmers, and D.A. Soluk. 2008. Exploring riverine zooplankton in three habitats of the Illinois River ecosystem: where do they come from? Limnology and Oceanography 53: 2583–2593. https://doi.org/10.4319/lo.2008.53.6.2583.

    Article  Google Scholar 

  • Wiebe, P.H. 1988. Functional regression equations for zooplankton displacement volume, wet weight, dry weight, and carbon: a correction. Fisheries Bulletin 86: 833–835.

    Google Scholar 

  • Williamson, C.E., and J. Reid. 2001. Copepoda. In Ecology and classification of North American freshwater invertebrates, eds. Thorp, J.H. and A. Covich, 2nd ed., 915–954. San Diego: Academic Press (Elsevier).

  • Winkler, G., J.J. Dodson, N. Bertrand, D. Thivierge, and W.F. Vincent. 2003. Trophic coupling across the St. Lawrence River estuarine transition zone. Marine Ecology Progress Series 251: 59–73. https://doi.org/10.3354/meps251059.

    Article  Google Scholar 

  • Youngbluth, Marsh J. 1980. Daily, seasonal, and annual fluctuations among zooplankton populations in an unpolluted tropical embayment. Estuarine and Coastal Marine Science 10: 265–287. https://doi.org/10.1016/S0302-3524(80)80101-0.

    Article  Google Scholar 

  • Zuur, A., E.N. Ieno, N. Walker, A.A. Saveliev, and G.M. Smith. 2009. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. New York: Springer-Verlag.

    Google Scholar 

Download references

Acknowledgements

We are grateful to S. Allen, M. O’Connor, C. Harley, and two anonymous reviewers whose feedback substantially improved this project and the resulting manuscript. Special thanks to our boat operators, C. Payne and L. Pakhomova, and field volunteers, N. Sergeenko, M. Madsen, S. Ouchi, and J. Grimm. We thank Environment Canada for providing boat time and crew for several cruises.

Funding

This project was funded through two EOAS shiptime grants (RGPST-453229-14 and RGPST-470192-15) to JKB and EAP and a Discovery Grant (RGPIN-2014-05107) to EAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Breckenridge.

Additional information

Communicated by David G. Kimmel

Electronic Supplementary Material

ESM 1

(DOCX 793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breckenridge, J., Pakhomov, E., Emry, S. et al. Copepod Assemblage Dynamics in a Snowmelt-Dominated Estuary. Estuaries and Coasts 43, 1502–1518 (2020). https://doi.org/10.1007/s12237-020-00722-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00722-3

Keywords

Navigation