Skip to main content

Advertisement

Log in

Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Seaweed blooms have become a serious worldwide environmental, economic and social problem. Reducing the cost of electrodes for electrochemical generation/storage systems is crucial for its commercialization. Ascophyllum nodosum grows abundantly in northern oceans, in this study, we evaluate A. nodosum derived chemically activated biocarbon (AKPH) with potassium hydroxide (KOH) as electrode material for oxygen reduction reaction and supercapacitors. Physical–chemical, morphological and electrochemical characterizations were performed. SEM micrographs revealed the morphology changes in AKPH due to KOH activation. AKPH nitrogen and sulfur contents were 0.80 and 5.62 (wt.%), respectively and it exhibited 1493 m2 g−1 surface area with an ID/IG intensity ratio of 1.34 ± 0.01. The electrochemical performance indicates a good performance when compared to commercial platinum, with an onset and half-wave potential of 0.878 and 0.75 V vs. RHE, respectively; and a current density of 5.2 mA cm−2. AKPH exhibited a capacitance of 207.3 F g−1 at 0.5 A g−1 and good stability after 2500 cycles at 5 A g−1 with a retention capability of 92.3%. This performance turns seaweed in a promising way to synthesize materials for applications in energy conversion and storage field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Zaidi, T. Matsuura, Polymer Membranes for Fuel Cells (Springer, New York, 2010)

    Google Scholar 

  2. F. Li, S. Bashir, J.L. Liu, Nanostructured Materials for Next-Generation Energy Storage and Conversion (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-662-56364-9

    Book  Google Scholar 

  3. S. Srinivasan, Fuel Cells: From Fundamentals to Applications (Springer, New York, 2006)

    Google Scholar 

  4. C. Takei, K. Kakinuma, K. Kawashima, K. Tashiro, M. Watanabe, M. Uchida, Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes. J. Power Sour. 324, 729–737 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.117

    Article  CAS  Google Scholar 

  5. M. Wang, C. Hu, B.B. Barnes, G. Mitchum, B. Lapointe, J.P. Montoya, The great Atlantic Sargassum Belt. Science 365, 83–87 (2019). https://doi.org/10.1126/science.aaw7912

    Article  CAS  PubMed  Google Scholar 

  6. S.U. Kadam, C.P.O. Donnell, D.K. Rai, M.B. Hossain, C.M. Burgess, D. Walsh et al., Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea. Mar. Drugs 13, 4270–4280 (2015). https://doi.org/10.3390/md13074270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L.M. Kay, A.L. Schmidt, K.L. Wilson, H.K. Lotze, Interactive effects of increasing temperature and nutrient loading on the habitat-forming rockweed Ascophyllum nodosum. Aquat. Bot. 133, 70–78 (2016). https://doi.org/10.1016/j.aquabot.2016.06.002

    Article  Google Scholar 

  8. J.M. Lorenzo, R. Agregán, P.E.S. Munekata, D. Franco, J. Carballo, S. Şahin et al., Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar. Drugs 15, 1–11 (2017). https://doi.org/10.3390/md15110360

    Article  CAS  Google Scholar 

  9. X. Wu, X. Yu, Z. Lin, J. Huang, L. Cao, Nitrogen doped graphitic carbon ribbons from cellulose as non noble metal catalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 41, 14111–14122 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.275

    Article  CAS  Google Scholar 

  10. E. Antolini, Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew. Sustain. Energy. Rev. 58, 34–51 (2016). https://doi.org/10.1016/j.rser.2015.12.330

    Article  CAS  Google Scholar 

  11. S.-H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka et al., KOH activation of carbon nanofibers. Carbon 42, 1723–1729 (2004). https://doi.org/10.1016/j.carbon.2004.03.006

    Article  CAS  Google Scholar 

  12. J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012). https://doi.org/10.1039/C2JM34066F

    Article  CAS  Google Scholar 

  13. X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang, S. Chen, Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 7, 6136–6142 (2015). https://doi.org/10.1039/c5nr00013k

    Article  CAS  PubMed  Google Scholar 

  14. C. Guo, W. Liao, Z. Li, L. Sun, C. Chen, Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction. Nanoscale 7, 15990–15998 (2015). https://doi.org/10.1039/c5nr03828f

    Article  CAS  PubMed  Google Scholar 

  15. R. Wang, H. Wang, T. Zhou, J. Key, Y. Ma, Z. Zhang et al., The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. J. Power Sour. 274, 741–747 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.049

    Article  CAS  Google Scholar 

  16. P. Chen, L.-K. Wang, G. Wang, M.-R. Gao, J. Ge, W.-J. Yuan et al., Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7, 4095–4103 (2014). https://doi.org/10.1039/C4EE02531H

    Article  CAS  Google Scholar 

  17. M. Li, Y. Xiong, X. Liu, C. Han, Y. Zhang, X. Bo et al., Iron and nitrogen co-doped carbon nanotube@hollow carbon fibers derived from plant biomass as efficient catalysts for the oxygen reduction reaction. J. Mater. Chem. A 3, 9658–9667 (2015). https://doi.org/10.1039/c5ta00958h

    Article  CAS  Google Scholar 

  18. M. Zhang, X. Jin, L. Wang, M. Sun, Y. Tang, Y. Chen et al., Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction. Appl. Surf. Sci. 411, 251–260 (2017). https://doi.org/10.1016/j.apsusc.2017.03.097

    Article  CAS  Google Scholar 

  19. S. Gao, H. Fan, S. Zhang, Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. J. Mater. Chem. A 2, 18263–18270 (2014). https://doi.org/10.1039/c4ta03558e

    Article  CAS  Google Scholar 

  20. M. Borghei, N. Laocharoen, E. Kibena-Põldsepp, L.-S. Johansson, J. Campbell, E. Kauppinen et al., Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells. Appl. Catal. B Environ. 204, 394–402 (2017). https://doi.org/10.1016/j.apcatb.2016.11.029

    Article  CAS  Google Scholar 

  21. H. Zhou, J. Zhang, J. Zhu, Z. Liu, C. Zhang, S. Mu, A self-template and KOH activation co-coupling strategy to synthesize ultrahigh surface area nitrogen-doped porous graphene for oxygen reduction. RSC Adv. 6, 73292–73300 (2016). https://doi.org/10.1039/c6ra16703a

    Article  CAS  Google Scholar 

  22. M. Rana, K. Subramani, M. Sathish, U.K. Gautam, Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture. Carbon 114, 679–689 (2017). https://doi.org/10.1016/j.carbon.2016.12.059

    Article  CAS  Google Scholar 

  23. Y.J. Bae, C. Ryu, J.K. Jeon, J. Park, D.J. Suh, Y.W. Suh et al., The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour. Technol. 102, 3512–3520 (2011). https://doi.org/10.1016/j.biortech.2010.11.023

    Article  CAS  PubMed  Google Scholar 

  24. J.L. Shamshina, G. Gurau, L.E. Block, L.K. Hansen, C. Dingee, A. Walters et al., Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J. Mater. Chem. B 2, 3924–3936 (2014). https://doi.org/10.1039/c4tb00329b

    Article  CAS  PubMed  Google Scholar 

  25. E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43, 786–795 (2005). https://doi.org/10.1016/j.carbon.2004.11.005

    Article  CAS  Google Scholar 

  26. P. González-García, Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 82, 1393–1414 (2018). https://doi.org/10.1016/j.rser.2017.04.117

    Article  CAS  Google Scholar 

  27. G. Wang, H. Peng, X. Qiao, L. Du, X. Li, T. Shu et al., Biomass-derived porous heteroatom-doped carbon spheres as a high-performance catalyst for the oxygen reduction reaction. Int. J. Hydrog. Energy 41, 14101–14110 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.023

    Article  CAS  Google Scholar 

  28. D. Lardizabal-Guitierrez, D. González-Quijano, P. Bartolo-Pérez, B. Escobar-Morales, F.J. Rodríguez-Varela, I.L. Alonso-Lemus, Communication—synthesis of self-doped metal-free electrocatalysts from waste leather with high ORR activity. J. Electrochem. Soc. 163, H15–H17 (2016). https://doi.org/10.1149/2.0191602jes

    Article  CAS  Google Scholar 

  29. Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44, 3295–3346 (2015). https://doi.org/10.1039/c4cs00492b

    Article  CAS  PubMed  Google Scholar 

  30. D.W. Winston, D. Xu, Active sites derived from heteroatom dopign in carbon materials for oxygen reduction reaction. Electrocatal. Fuel Cells Hydrog. Evol. (2018). https://doi.org/10.5772/intechopen.77048

    Article  CAS  Google Scholar 

  31. G.A. Ferrero, K. Preuss, A.B. Fuertes, M. Sevilla, M.M. Titirici, The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. J. Mater. Chem. A 4, 2581–2589 (2016). https://doi.org/10.1039/c5ta10063a

    Article  CAS  Google Scholar 

  32. Y. Li, J. Huang, J. Wang, X. Chen, H. Xiao, C. Tao, Dopamine assisted one-step pyrolysis of glucose for the preparation of porous carbon with a high surface area. Nanomaterials 8, 854 (2018). https://doi.org/10.3390/nano8100854

    Article  CAS  PubMed Central  Google Scholar 

  33. D.W. Lee, M.H. Jin, D. Oh, S.W. Lee, J.S. Park, Straightforward synthesis of hierarchically porous nitrogen-doped carbon via pyrolysis of chitosan/urea/KOH mixtures and its application as a support for formic acid dehydrogenation catalysts. ACS Sustain. Chem. Eng. 5, 9935–9944 (2017). https://doi.org/10.1021/acssuschemeng.7b01888

    Article  CAS  Google Scholar 

  34. X.B. Wang, T.C. Lin, H.Y. Hsueh, S.C. Lin, X.D. He, R.M. Ho, Nanoporous gyroid-structured epoxy from block copolymer templates for high protein adsorbability. Langmuir 32, 6419–6428 (2016). https://doi.org/10.1021/acs.langmuir.6b01765

    Article  CAS  PubMed  Google Scholar 

  35. L. Qiang, Z. Hu, Z. Li, Y. Yang, X. Wang, Y. Zhou et al., Hierarchical porous biomass carbon derived from cypress coats for high energy supercapacitors. J. Mater. Sci. Mater. Electron (2019). https://doi.org/10.1007/s10854-019-01045-1

    Article  Google Scholar 

  36. R. Rajagopalan, A. Balakrishnan, Innovations in Engineered Porous Materials for Energy Generation and Storage Applications (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  37. N.K. Chaudhari, M.Y. Song, J.-S. Yu, Heteroatom-doped highly porous carbon from human urine. Sci. Rep. 4, 5221 (2015). https://doi.org/10.1038/srep05221

    Article  CAS  Google Scholar 

  38. B. Han, C. Geng, G. Cheng, Konjac sponge derived carbon flakes with optimized pore structure for high-performance supercapacitor. J. Nanotechnol. 2018, 12 (2018)

    Article  Google Scholar 

  39. E.Y. Choi, C.K. Kim, Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep. 7, 1–9 (2017). https://doi.org/10.1038/s41598-017-04597-6

    Article  CAS  Google Scholar 

  40. W.C. Lim, C. Srinivasakannan, N. Balasubramanian, Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J. Anal. Appl. Pyrolysis 88, 181–186 (2010). https://doi.org/10.1016/j.jaap.2010.04.004

    Article  CAS  Google Scholar 

  41. S. Jung, Y. Myung, B.N. Kim, I.G. Kim, I. You, T. Kim, Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density. Sci. Rep. 8, 1–8 (2018). https://doi.org/10.1038/s41598-018-20096-8

    Article  CAS  Google Scholar 

  42. Y. Wang, X. Guo, M. Zhu, B. Dai, F. Yu, Z. Tian et al., Enhanced oxygen reduction reaction by in situ anchoring Fe2N nanoparticles on nitrogen-doped pomelo peel-derived carbon. Nanomaterials 7, 404 (2017). https://doi.org/10.3390/nano7110404

    Article  CAS  PubMed Central  Google Scholar 

  43. C. Ruan, K. Ai, L. Lu, Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Adv. 4, 30887–30895 (2014). https://doi.org/10.1039/c4ra04470c

    Article  CAS  Google Scholar 

  44. M. Demir, A.A. Farghaly, M.J. Decuir, M.M. Collinson, R.B. Gupta, Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin. Mater. Chem. Phys. 216, 508–516 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.008

    Article  CAS  Google Scholar 

  45. Y. Wang, D. Duan, J. Ma, W. Gao, H. Peng, P. Huang et al., Waste wine mash-derived doped carbon materials as an efficient electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 44, 31949–31959 (2019). https://doi.org/10.1016/j.ijhydene.2019.10.100

    Article  CAS  Google Scholar 

  46. M.F. Ahmer, Graphene as Energy Storage Material for Supercapacitors (Materials Research Forum LLC, Millersville, 2020)

    Google Scholar 

  47. G.M. Swain, A. Akinpelu, S. Bukola, B. Merzougui, T. Laoui, M. Shao et al., Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system. Electrochim. Acta 146, 809–818 (2014). https://doi.org/10.1016/j.electacta.2014.08.152

    Article  CAS  Google Scholar 

  48. M.Y. Song, H.Y. Park, D.-S. Yang, D. Bhattacharjya, J.-S. Yu, Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. Chemsuschem 7, 1755–1763 (2014). https://doi.org/10.1002/cssc.201400049

    Article  CAS  PubMed  Google Scholar 

  49. F. Liu, L. Liu, X. Li, J. Zeng, L. Du, S. Liao, Nitrogen self-doped carbon nanoparticles derived from spiral seaweeds for oxygen reduction reaction. RSC Adv. 6, 27535–27541 (2016). https://doi.org/10.1039/C5RA27499K

    Article  CAS  Google Scholar 

  50. J. Li, S. Wang, Y. Ren, Z. Ren, Y. Qiu, J. Yu, Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media. Electrochim. Acta 149, 56–64 (2014). https://doi.org/10.1016/j.electacta.2014.10.089

    Article  CAS  Google Scholar 

  51. S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang et al., Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci. 8, 221–229 (2015). https://doi.org/10.1039/C4EE02087A

    Article  CAS  Google Scholar 

  52. L. Zhou, P. Fu, D. Wen, Y. Yuan, S. Zhou, Self-constructed carbon nanoparticles-coated porous biocarbon from plant moss as advanced oxygen reduction catalysts. Appl. Catal. B Environ. 181, 635–643 (2016). https://doi.org/10.1016/j.apcatb.2015.08.035

    Article  CAS  Google Scholar 

  53. X. Wu, S. Li, B. Wang, J. Liu, M. Yu, From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C3N4 3D network architectures as ultralow-cost bifunctional oxygen catalysts. Microporous Mesoporous Mater. 240, 216–226 (2017). https://doi.org/10.1016/j.micromeso.2016.11.022

    Article  CAS  Google Scholar 

  54. K.N. Chaudhari, M.Y. Song, J.S. Yu, Transforming hair into heteroatom-doped carbon with high surface area. Small 10, 2625–2636 (2014). https://doi.org/10.1002/smll.201303831

    Article  CAS  PubMed  Google Scholar 

  55. F. Liu, H. Peng, X. Qiao, Z. Fu, P. Huang, S. Liao, High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. Int. J. Hydrog. Energy 39, 10128–10134 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.176

    Article  CAS  Google Scholar 

  56. D. Mhamane, A. Suryawanshi, A. Banerjee, V. Aravindan, S. Ogale, M. Srinivasan, Non-aqueous energy storage devices using graphene nanosheets synthesized by green route. AIP Adv. 3, 9 (2013). https://doi.org/10.1063/1.4802243

    Article  CAS  Google Scholar 

  57. F. Razmjooei, K. Singh, T.H. Kang, N. Chaudhari, J. Yuan, J.-S. Yu, Urine to highly porous heteroatom-doped carbons for supercapacitor: a value added journey for human waste. Sci. Rep. 7, 10910 (2017). https://doi.org/10.1038/s41598-017-11229-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J.L. Shi, W.C. Du, Y.X. Yin, Y.G. Guo, L.J. Wan, Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. J. Mater. Chem. A 2, 10830–10834 (2014). https://doi.org/10.1039/c4ta01547a

    Article  CAS  Google Scholar 

  59. J. Qi, B. Jin, P. Bai, W. Zhang, L. Xu, Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 9, 24344–24356 (2019). https://doi.org/10.1039/c9ra04791c

    Article  CAS  Google Scholar 

  60. H. Chen, F. Yu, G. Wang, L. Chen, B. Dai, S. Peng, Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors. ACS Omega 3, 4724–4732 (2018). https://doi.org/10.1021/acsomega.8b00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. H. Ma, Z. Chen, X. Gao, W. Liu, H. Zhu, 3D hierarchically gold-nanoparticle-decorated porous carbon for high-performance supercapacitors. Sci. Rep. 9, 1–10 (2019). https://doi.org/10.1038/s41598-019-53506-6

    Article  CAS  Google Scholar 

  62. N.F. Sylla, Effect of porosity enhancing agents on the electrochemical performance of high-energy ultracapacitor electrodes derived from peanut shell waste. Sci. Rep. 9, 1–15 (2019). https://doi.org/10.1038/s41598-019-50189-x

    Article  CAS  Google Scholar 

  63. C. Peng, T. Zeng, Y. Yu, Z. Li, Z. Kuai, W. Zhao, Fluorine and oxygen co-doped porous carbons derived from third- class red dates for high-performance symmetrical supercapacitors. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9990-3

    Article  Google Scholar 

  64. Y. Zhou, P. Jin, Y. Zhou, Y. Zhu, High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites. Sci. Rep. 8, 1–7 (2018). https://doi.org/10.1038/s41598-018-27460-8

    Article  CAS  Google Scholar 

  65. B.K. Mutuma, B.J. Matsoso, D. Momodu, K.O. Oyedotun, N.J. Coville, N. Manyala, Deciphering the structural, textural, and electrochemical properties of activated BN-doped spherical carbons. Nanomaterials (2019). https://doi.org/10.3390/nano9030446

    Article  PubMed  PubMed Central  Google Scholar 

  66. W. Yu, H. Wang, S. Liu, N. Mao, X. Liu, J. Shi et al., N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J. Mater. Chem. A 4, 5973–5983 (2016). https://doi.org/10.1039/C6TA01821A

    Article  CAS  Google Scholar 

  67. Y. Xia, Z. Xiao, X. Dou, H. Huang, X. Lu, R. Yan et al., Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7, 7083–7092 (2013)

    Article  CAS  Google Scholar 

  68. Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu et al., A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sour. 209, 152–157 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.089

    Article  CAS  Google Scholar 

  69. Z. Xie, X. Shang, K. Xu, J. Yang, B. Hu, P. Nie et al., Facile synthesis of in situ graphitic-N doped porous carbon derived from ginkgo leaf for fast capacitive deionization. J. Electrochem. Soc. 166, 240–247 (2019). https://doi.org/10.1149/2.1401906jes

    Article  CAS  Google Scholar 

  70. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S. Qiao et al., Bioresource technology preparation of capacitor’s electrode from sunflower seed shell. Bioresour. Technol. 102, 1118–1123 (2011). https://doi.org/10.1016/j.biortech.2010.08.110

    Article  CAS  PubMed  Google Scholar 

  71. T. Mitravinda, K. Nanaji, S. Anandan, A. Jyothirmayi, V. Sai, K. Chakravadhanula et al., Facile synthesis of corn silk derived nanoporous carbon for an improved supercapacitor performance facile synthesis of corn silk derived nanoporous carbon for an improved supercapacitor performance. J. Electrochem. Soc. (2018). https://doi.org/10.1149/2.0621814jes

    Article  Google Scholar 

  72. T. Ramesh, N. Rajalakshmi, K.S. Dhathathreyan, L.R.G. Reddy, Hierarchical porous carbon microfibers derived from tamarind seed coat for high-energy supercapacitor application. ACS Omega 3, 12832–12840 (2018). https://doi.org/10.1021/acsomega.8b01850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. L. Qin, Z. Hou, S. Lu, S. Liu, Z. Liu, E. Jiang, Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material. Int. J. Electrochem. Sci. 14, 8907–8918 (2019). https://doi.org/10.20964/2019.09.20

    Article  CAS  Google Scholar 

  74. N. Guo, M. Li, X. Sun, F. Wang, R. Yang, Tremella derived ultrahigh speci fi c surface area activated carbon for high performance supercapacitor. Mater. Chem. Phys. 201, 399–407 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge fruitful discussions with Katya Frank, Aryane Tofanello, César Cuautle, and Lizbeth Morales; technical support from Marco Pineda, Mónica Ruiz, Isabel Loria, Tanit Toledano, Gustavo Martínez and José Cortes; financial support from Problemas Nacionales 2016-2266, and the Manuscript Writing Training Team of CONACyT for their help with reviews and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Y. Perez-Salcedo or B. Escobar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Salcedo, K.Y., Ruan, S., Su, J. et al. Seaweed-derived KOH activated biocarbon for electrocatalytic oxygen reduction and supercapacitor applications. J Porous Mater 27, 959–969 (2020). https://doi.org/10.1007/s10934-020-00871-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00871-7

Keywords

Navigation