Skip to main content

Advertisement

Log in

Significance of achaete-scute complex homologue 1 (ASCL1) in pulmonary neuroendocrine carcinomas; RNA sequence analyses using small cell lung cancer cells and Ascl1-induced pulmonary neuroendocrine carcinoma cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

ASCL1 is one of the master transcription factors of small cell lung carcinoma (SCLC). To investigate the significance of ASCL1 in pulmonary neuroendocrine carcinoma, we performed 2 comparative RNA-seq studies between H69 (ASCL1-positive, classical type SCLC) and H69AR (ASCL1-negative, variant type SCLC) and between ASCL1-transfected A549 adenocarcinoma cell lines (A549(ASCL1+) cell lines) and A549(control) cell lines. RNA-seq analyses revealed that 940 genes were significantly different between the H69 and H69AR cell lines, and 728 between the A549(ASCL1+) and A549(control) cell lines. In total, 120 common genes between these analyses were selected as candidate ASCL1-related genes, and included genes with various cellular functions, such as neural development, secretion, growth, and morphology. Their expression degrees in three classical and two variant SCLC cell lines, two A549(ASCL1+) and two A549(control) cell lines were subjected to quantitative PCR analyses. Since the candidate ASCL1-related genes were strongly expressed in the classical SCLC and A549(ASCL1+) cell lines and more weakly expressed in the variant SCLC and A549(control) cell lines, the ASCL1-related 7 molecules INSM1, ISL1, SYT4, KCTD16, SEZ6, MS4A8, and COBL were further selected. These molecules suggested diverse functions for A549(ASCL1+): INSM1 and ISL1 are transcription factors associated with neuroendocrine differentiation, while SYT4, KTCD16, and SEZ6 may be related to neurosecretory functions and MS4A8 and COBL to cell growth and morphology. An immunohistochemistry of these seven molecules was performed on lung carcinoma tissues and the xenotransplanted tumors of A549(ASCL1+), and they were preferentially and positively stained in ASCL1-postive tumor tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASCL1:

Achaete-scute complex homologue 1

HES1:

Hairy and enhancer of split 1

CHGA:

Chromogranin A

CHGB:

Chromogranin B

SCG2:

Secretogranin 2

SYP:

Synaptophysin

NCAM:

Neural cell adhesion molecule

GRP:

Gastrin releasing peptide,

SYT1:

Synaptotagmin1

INSM1:

Insulinoma associated protein 1

SNAP25:

Synaptosome associated protein 25

YAP1:

Yes associated protein 1

NEUROD1:

Neurogenic differentiation 1

POU2F3:

POU class 2 homeobox 3

CPLX2:

Complexin 2

SYTL3:

Synaptotagmin like 3

NTRK3:

Neurotrophic receptor tyrosine kinase 3

NCF2:

Neutrophil cytosolic factor 2

GAS2:

Growth arrest specific 2

CCND2:

Cyclin D2

INHBB:

Inhibin subunit beta B

CREG1:

Cellular repressor of E1A stimulated genes 1

PLK2:

Polo-like kinase 2

CCND3:

Cyclin D3

CLDN4:

Claudin 4

BCAM:

Basal cell adhesion molecule

JUP:

Junction plakoglobin

CDH1:

Cadherin 1

CD44:

CD44 molecule

CLMP:

CXADR like membrane protein

ISL1:

Islet1

SYT4:

Synaptotagmin4

KCTD16:

Potassium channel tetramerization domain containing 16

SEZ6:

Seizure-related 6 homolog

MS4A8:

Membrane spanning 4 domains A8

COBL:

Cordon-bleu WH2 repeat protein

BDNF:

Brain derived neurotrophic factor

NFASC:

Neurofascin

DMD:

Dystrophin

GDNF:

Glial cell derived neurotrophic factor

VCAN:

Versican

ABCC4:

ATP binding cassette subfamily C member 4

ABCC8:

ATP binding cassette subfamily C member 8

SLC30A3:

Solute carrier family 30 member 3

SLC39A6:

Solute carrier family 39 member 6

SLC40A1:

Solute carrier family 40 member 1

References

  • Agaimy A, Erlenbach-Wünsch K, Konukiewitz B, Schmitt AM, Rieker RJ, Vieth M, Kiesewetter F, Hartmann A, Zamboni G, Perren A, Klöppel G (2013) ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol 26(7):995–1003

    CAS  PubMed  Google Scholar 

  • Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, Qualmann B (2007) Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131(2):337–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, Dospoy PD, Lee V, Tan C, Sullivan JP, Larsen JE, Girard L, Behrens C, Wistuba II, Xie Y, Cobb MH, Gazdar AF, Johnson JE, Minna JD (2014) ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc Natl Acad Sci USA 111(41):14788–14793

    CAS  PubMed  Google Scholar 

  • Ball DW (2004) Achaete-scute homolog-1 and notch in lung neuroendocrine development and cancer. Cancer Lett 204(2):159–169

    CAS  PubMed  Google Scholar 

  • Bangur CS, Johnson JC, Switzer A, Wang YH, Hill B, Fanger GR, Wang T, Retter MW (2004) Identification and characterization of L985P, a CD20 related family member over-expressed in small cell lung carcinoma. Int J Oncol 25(6):1583–1590

    CAS  PubMed  Google Scholar 

  • Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB, Ball DW (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386(6627):852–855

    CAS  PubMed  Google Scholar 

  • Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, Girard L, Minna JD, Gazdar AF, Cobb MH, Johnson JE (2016) ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep 16(5):1259–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla E, Beasley MB, Austin JHM, Capelozzi VL, Chirieac LR, Devesa SS, Frank GA, Gazder A, Ishikawa Y, Jen J, Jett J, Marchevsky AM, Nicholson S, Pelosi G, Powell CA, Rami- Porta R, Scagliotti G, Thunnissen E, Travis WD, van Schil P, Yang P (2015) Neuroendocrine tumours small cell carcinoma. In: Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (eds) WHO classification of tumours of the Lung, Pleura, Thymus and Heart, 4th edn. IARC, Lyon, pp 63–68

    Google Scholar 

  • Bunn PA Jr, Minna JD, Augustyn A, Gazdar AF, Ouadah Y, Krasnow MA, Berns A, Brambilla E, Rekhtman N, Massion PP, Niederst M, Peifer M, Yokota J, Govindan R, Poirier JT, Byers LA, Wynes MW, McFadden DG, MacPherson D, Hann CL, Farago AF, Dive C, Teicher BA, Peacock CD, Johnson JE, Cobb MH, Wendel HG, Spigel D, Sage J, Yang P, Pietanza MC, Krug LM, Heymach J, Ujhazy P, Zhou C, Goto K, Dowlati A, Christensen CL, Park K, Einhorn LH, Edelman MJ, Giaccone G, Gerber DE, Salgia R, Owonikoko T, Malik S, Karachaliou N, Gandara DR, Slotman BJ, Blackhall F, Goss G, Thomas R, Rudin CM, Hirsch FR (2016) Small cell lung cancer: can recent advances in biology and molecular biology be translated into improved outcomes? J Thorac Oncol 11(4):453–474

    PubMed  PubMed Central  Google Scholar 

  • Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW, Zweig MH, Minna JD (1985) Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45(6):2913–2923

    CAS  PubMed  Google Scholar 

  • Demelash A, Rudrabhatla P, Pant HC, Wang X, Amin ND, McWhite CD, Naizhen X, Linnoila RI (2012) Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway. Mol Biol Cell 23(15):2856–2866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domenichini A, Adamska A, Falasca M (2019) ABC transporters as cancer drivers: potential functions in cancer development. Biochim Biophys Acta 1:52–60

    Google Scholar 

  • Eon Kuek L, Leffler M, Mackay GA, Hulett MD (2016) The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol 94(1):11–23

    PubMed  Google Scholar 

  • Fujino K, Motooka Y, Hassan WA, Ali Abdalla MO, Sato Y, Kudoh S, Hasegawa K, Niimori-Kita K, Kobayashi H, Kubota I, Wakimoto J, Suzuki M, Ito T (2015) Insulinoma-associated protein 1 is a crucial regulator of neuroendocrine differentiation in lung cancer. Am J Pathol 185(12):3164–3177

    CAS  PubMed  Google Scholar 

  • Fujino K, Yasufuku K, Kudoh S, Motooka Y, Sato Y, Wakimoto J, Kubota I, Suzuki M, Ito T (2017) INSM1 is the best marker for the diagnosis of neuroendocrine tumors: comparison with CGA, SYP andCD56. Int J Clin Exp Pathol 10(5):5393–5405

    CAS  Google Scholar 

  • Gazdar AF, Carney DN, Nau MM, Minna JD (1985) Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res 45(6):2924–2930

    CAS  PubMed  Google Scholar 

  • Gazdar AF, Bunn PA, Minna JD (2017) Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 17(12):765

    CAS  PubMed  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75(3):463–476

    CAS  PubMed  Google Scholar 

  • Gunnersen JM, Kim MH, Fuller SJ, De Silva M, Britto JM, Hammond VE, Davies PJ, Petrou S, Faber ES, Sah P, Tan SS (2007) Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons. Neuron 56(4):621–639

    CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  • Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T, Guillemot F, Kageyama R, Kitamura H (2000) Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 127(18):3913–3921

    CAS  PubMed  Google Scholar 

  • Ito T, Udaka N, Okudela K, Yazawa T, Kitamura H (2003) Mechanisms of neuroendocrine differentiation in pulmonary neuroendocrine cells and small cell carcinoma. Endocr Pathol 14(2):133–139

    CAS  PubMed  Google Scholar 

  • Ito T, Kudoh S, Ichimura T, Fujino K, Hassan WA, Udaka N (2017) Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1. Hum Cell 30(1):1–10

    CAS  PubMed  Google Scholar 

  • Jiang L, Huang J, Higgs BW, Hu Z, Xiao Z, Yao X, Conley S, Zhong H, Liu Z, Brohawn P, Shen D, Wu S, Ge X, Jiang Y, Zhao Y, Lou Y, Morehouse C, Zhu W, Sebastian Y, Czapiga M, Oganesyan V, Fu H, Niu Y, Zhang W, Streicher K, Tice D, Zhao H, Zhu M, Xu L, Herbst R, Su X, Gu Y, Li S, Huang L, Gu J, Han B, Jallal B, Shen H, Yao Y (2016) Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLoS Genet. 12(4):1005895

    Google Scholar 

  • Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W, Nelkin BD, Ball DW (2009) Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 69(3):845–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS (2015) The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 18:1–17

    PubMed  Google Scholar 

  • Kim MH, Gunnersen JM, Tan SS (2002) Localized expression of the seizure-related gene SEZ-6 in developing and adult forebrains. Mech Dev 118(1–2):171–174

    CAS  PubMed  Google Scholar 

  • Li Q, Shu Y (2014) Role of solute carriers in response to anticancer drugs. Mol Cell Ther 27(2):15

    CAS  Google Scholar 

  • Li Y, Linnoila RI (2012) Multidirectional differentiation of achaete-scute homologue-1-defined progenitors in lung development and injury repair. Am J Respir Cell Mol Biol 47(6):768–775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linnoila RI, Zhao B, DeMayo JL, Nelkin BD, Baylin SB, DeMayo FJ, Ball DW (2000) Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res 60(15):4005–4009

    CAS  PubMed  Google Scholar 

  • Meder L, König K, Ozretić L, Schultheis AM, Ueckeroth F, Ade CP, Albus K, Boehm D, Rommerscheidt-Fuss U, Florin A, Buhl T, Hartmann W, Wolf J, Merkelbach-Bruse S, Eilers M, Perner S, Heukamp LC, Buettner R (2016) NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. Int J Cancer 138(4):927–938

    CAS  PubMed  Google Scholar 

  • Michel J, Schönhaar K, Schledzewski K, Gkaniatsou C, Sticht C, Kellert B, Lasitschka F, Géraud C, Goerdt S, Schmieder A (2013) Identification of the novel differentiation marker MS4A8B and its murine homolog MS4A8A in colonic epithelial cells lost during neoplastic transformation in human colon. Cell Death Dis 4:e469. https://doi.org/10.1038/cddis.2012.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirski SE, Gerlach JH, Cole SP (1987) Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res 47(10):2594–2598

    CAS  PubMed  Google Scholar 

  • Moghadam PK, Jackson MB (2013) The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol (Lausanne) 18(4):124

    Google Scholar 

  • Morimoto M, Nishinakamura R, Saga Y, Kopan R (2012) Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139(23):4365–4373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motooka Y, Fujino K, Sato Y, Kudoh S, Suzuki M, Ito T (2017) Pathology of Notch2 in lung cancer. Pathology 49:486–493

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Dermawan JK, Lanigan CP, Farver CF (2019) Insulinoma-associated protein 1 (INSM1) is a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: an immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod Pathol 32(1):100–109

    CAS  PubMed  Google Scholar 

  • Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T (2005) ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res 65(23):10680–10685

    CAS  PubMed  Google Scholar 

  • Osada H, Tomida S, Yatabe Y, Tatematsu Y, Takeuchi T, Murakami H, Kondo Y, Sekido Y, Takahashi T (2008) Roles of achaete-scute homologue 1 in DKK1 and E-cadherin repression and neuroendocrine differentiation in lung cancer. Cancer Res 68(6):1647–1655

    CAS  PubMed  Google Scholar 

  • Pietanza MC, Byers LA, Minna JD, Rudin CM (2015) Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res 21(10):2244–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rooper LM, Sharma R, Li QK, Illei PB, Westra WH (2017) INSM1 demonstrates superior performance to the individual and combined use of synaptophysin, chromogranin and CD56 for diagnosing neuroendocrine tumors of the thoracic cavity. Am J Surg Pathol 41(11):1561–1569

    PubMed  Google Scholar 

  • Rosenbaum JN, Guo Z, Baus RM, Werner H, Rehrauer WM, Lloyd RV (2015) INSM1: a novel immunohistochemical and molecular marker for neuroendocrine and neuroepithelial neoplasms. Am J Clin Pathol. 144(4):579–591

    CAS  PubMed  Google Scholar 

  • Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D, Massion PP, Minna JD, Oliver TG, Quaranta V, Sage J, Thomas RK, Vakoc CR, Gazdar AF (2019) Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19(5):289–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt AM, Riniker F, Anlauf M, Schmid S, Soltermann A, Moch H, Heitz PU, Klöppel G, Komminoth P, Perren A (2008) Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 32(3):420–425

    PubMed  Google Scholar 

  • Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, Ball DW (2001) Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61(7):3200–3205

    CAS  PubMed  Google Scholar 

  • Stützer I, Selevsek N, Esterházy D, Schmidt A, Aebersold R, Stoffel M (2013) Systematic proteomic analysis identifies β-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic β-cells. J Biol Chem 288(15):10536–10547

    PubMed  PubMed Central  Google Scholar 

  • Sun L, Zhang Y, Zhang C (2018) Distinct expression and prognostic value of MS4A in gastric cancer. Open Med (Wars) 13:178–188

    CAS  Google Scholar 

  • Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM (2019) KCTD: a new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 25(7):887–902

    PubMed  PubMed Central  Google Scholar 

  • Tenjin Y, Kudoh S, Kubota S, Yamada T, Matsuo A, Sato Y, Ichimura T, Kohrogi H, Sashida G, Sakagami T, Ito T (2019) Ascl1-induced Wnt11 regulates neuroendocrine differentiation, cell proliferation, and E-cadherin expression in small-cell lung cancer and Wnt11 regulates small-cell lung cancer biology. Lab Invest. https://doi.org/10.1038/s41374-019-0277-y

    Article  PubMed  Google Scholar 

  • Travis WD, Brambilla E, Burke AP et al (2015) WHO Classification of tumours of the lung, pleura thymus and heart. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • van Coevorden-Hameete MH, de Bruijn MAAM, de Graaff E, Bastiaansen DAEM, Schreurs MWJ, Demmers JAA, Ramberger M, Hulsenboom ESP, Nagtzaam MMP, Boukhrissi S, Veldink JH, Verschuuren JJGM, Hoogenraad CC, Sillevis Smitt PAE, Titulaer MJ (2019) The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain 142(6):1631–1643

    PubMed  PubMed Central  Google Scholar 

  • Vician L, Lim IK, Ferguson G, Tocco G, Baudry M, Herschman HR (1995) Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc Natl Acad Sci USA 92(6):2164–2168

    CAS  PubMed  Google Scholar 

  • Wael H, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K, Ito T (2014) Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer 85(2):131–140

    PubMed  Google Scholar 

  • Ye L, Yao XD, Wan FN, Qu YY, Liu ZY, Shen XX, Li S, Liu XJ, Yue F, Wang N, Dai B, Ye DW (2014) MS4A8B promotes cell proliferation in prostate cancer. Prostate 74(9):911–922

    CAS  PubMed  Google Scholar 

  • Zhang W, Girard L, Zhang YA, Haruki T, Papari-Zareei M, Stastny V, Ghayee HK, Pacak K, Oliver TG, Minna JD, Gazdar AF (2018a) Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res 7(1):32–49

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Cui Q, Qu W, Ding X, Jiang D, Liu H (2018b) TRIM58/cg26157385 methylation is associated with eight prognostic genes in lung squamous cell carcinoma. Oncol Rep 40(1):206–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo H, Glaaser I, Zhao Y, Kurinov I, Mosyak L, Wang H, Liu J, Park J, Frangaj A, Sturchler E, Zhou M, McDonald P, Geng Y, Slesinger PA, Fan QR (2019) Structural basis for auxiliary subunit KCTD16 regulation of the GABAB receptor. Proc Natl Acad Sci USA 116(17):8370–8379

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Takako Maeda for her technical assistance and Mr. Shingo Usuki and the staff of the LILA of the Institute of Molecular Embryology and Genetics, Kumamoto University for their technical support of the RNA-seq analysis. This study was supported in part by the program of the Joint Usage/Research Center for Developmental Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (18K19480), by a Grant from the Smoking Research Foundation, and by an endowment from Dr. Yuko Aihara of Aihara Allergy and Pediatric Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Ito.

Ethics declarations

Conflict of interest:

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudoh, S., Tenjin, Y., Kameyama, H. et al. Significance of achaete-scute complex homologue 1 (ASCL1) in pulmonary neuroendocrine carcinomas; RNA sequence analyses using small cell lung cancer cells and Ascl1-induced pulmonary neuroendocrine carcinoma cells. Histochem Cell Biol 153, 443–456 (2020). https://doi.org/10.1007/s00418-020-01863-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-020-01863-z

Keywords

Navigation