Skip to main content
Log in

Biodegradable blends of poly(butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aim of this study was to prepare a new blend system by blending equimolar poly(L-lactic acid) (PLLA) and poly(D-lactide acid) (PDLA) with poly(butylene adipate-co-terephthalate) (PBAT) and to form stereocomplex polylactide (sc-PLA) during blending process. Then, sc-PLA would improve the performance of PBAT without compromising its biodegradability. Torque-time curve, differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) measurements indicated that only sc-PLA formed in PBAT matrix. The phase morphology showed that sc-PLA particles were uniformly dispersed in PBAT matrix, and the sizes were independent of their contents. The rheological properties of PBAT were significantly enhanced by addition of sc-PLA, especially after the formation of a percolation network structure. With the increase of sc-PLA content, the blends displayed increased yield strength and modulus and decreased elongation at break and tensile strength. The sc-PLA particles could reinforce PBAT matrix. Compared with pure PBAT, the heat resistance of PBAT/sc-PLA blends was improved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mekonnen TH, Mussone PG, Choi P, Bressler DC (2014) Adhesives from waste protein biomass for oriented strand board composites: development and performance. Macromol Mater Eng 299:1003–1012

    CAS  Google Scholar 

  2. Li Y, Han C, Yua Y, Huang D (2019) Uniaxial stretching and properties of fully biodegradable poly (lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. Int J Biol Macromol 129:1–12

    PubMed  Google Scholar 

  3. Muranaka M, Kitamura Y, Yoshizawa H (2007) Preparation of biodegradable microspheres by anionic dispersion polymerization with PLA copolymeric dispersion stabilizer. Colloid Polym Sci 285:1441–1448

    CAS  Google Scholar 

  4. Plummer CJG, Choo CKC, Boissard CIR, Bourban P-E, Mânson J-AE (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci 291:2203–2211

    CAS  Google Scholar 

  5. Andrade PO, Grinet MAVM, Costa MM, Santo AME, Marciano FR, Lobo AO (2018) Poly(lactic acid) fine fibers containing a low content of superhydrophilic multi-walled carbon nanotube graphene oxide hybrid as scaffolds for biological applications. Macromol Mater Eng 303:1800317

    Google Scholar 

  6. Pawar SP, Misra A, Bose S, Chatterjee K, Mittal V (2015) Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym Sci 293:2921–2930

    CAS  Google Scholar 

  7. Muthuraj R, Misra M, Mohanty AK (2018) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 135:45726

    Google Scholar 

  8. Li Y, Xin S, Bian Y, Xu K, Han C, Dong L (2016) The physical properties of poly(l-lactide) and functionalized eggshell powder composites. Int J Biol Macromol 85:63–73

    CAS  PubMed  Google Scholar 

  9. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Google Scholar 

  10. Gardella L, Calabrese M, Monticelli O (2014) PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid Polym Sci 292:2391–2398

    CAS  Google Scholar 

  11. Wu F, Zhang S, Zhang B, Yang W, Liu Z, Yang M (2016) The effect of the grafted chains on the crystallization of PLLA/PLLA-grafted SiO2 nanocomposites. Colloid Polym Sci 294:801–813

    CAS  Google Scholar 

  12. Tsuji H (2003) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials 24:537–547

    CAS  PubMed  Google Scholar 

  13. Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules 26:6918–6926

    CAS  Google Scholar 

  14. Dong Q, Li Y, Han C, Zhang X, Xu K, Zhang H, Dong L (2013) Poly(L-lactide)/poly(D-lactide)/multiwalled carbon nanotubes nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. J Appl Polym Sci 130:3919–3929

    CAS  Google Scholar 

  15. Shao J, Xiang S, Bian X, Sun J, Li G, Chen X (2015) Remarkable melting behavior of PLA stereocomplex in linear PLLA/PDLA blends. Ind Eng Chem Res 54:2246–2253

    CAS  Google Scholar 

  16. Li W, Sun Q, Mu B, Luo G, Xu H, Yang Y (2019) Poly(L-lactic acid) bio-composites reinforced by oligo(D-lactic acid) grafted chitosan for simultaneously improved ductility, strength and modulus. Int J Biol Macromol 131:495–504

    CAS  PubMed  Google Scholar 

  17. Dil EJ, Carreau PJ, Favis BD (2015) Morphology, miscibility and continuity development in poly(lacticacid)/poly(butylene adipate-co-terephthalate) blends. Polymer 68:202–212

    CAS  Google Scholar 

  18. Zhang N, Wang Q, Ren J, Wang L (2009) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256

    CAS  Google Scholar 

  19. Sirisinha K, Somboon W (2012) Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butyleneadipate-co-terephthalate) and poly(lactide). J Appl Polym Sci 124:4986–4992

    CAS  Google Scholar 

  20. Georgiopoulos P, Kontou E, Niaounakis M (2014) Thermomechanical properties and rheological behavior of biodegradable composites. Polym Compos 35:1140–1149

    CAS  Google Scholar 

  21. Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules 25:4114–4118

    CAS  Google Scholar 

  22. Cheng B, Zhou C, Yu W, Sun X (2001) Evaluation of rheological parameters of polymer melts in torque rheometers. Polym Test 20:811–818

    CAS  Google Scholar 

  23. Miyata T, Masuko T (1998) Crystallization behaviour of poly(L-lactide). Polymer 39:5515–5521

    CAS  Google Scholar 

  24. Tsuji H, Tezuka Y (2004) Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Biomacromolecules 5:1181–1186

    CAS  PubMed  Google Scholar 

  25. Tsuji H, Tashiro K, Bouapao L, Hanesaka M (2012) Synchronous and separate homo-crystallization of enantiomeric poly(L-lactic acid)/poly(D-lactic acid) blends. Polymer 53:747–754

    CAS  Google Scholar 

  26. Gupper A, Chan KLA, Kazarian S (2004) FT-IR imaging of solvent-induced crystallization in polymers. Macromolecules 37:6498–6503

    CAS  Google Scholar 

  27. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43:3873–3878

    CAS  Google Scholar 

  28. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    CAS  Google Scholar 

  29. Li Y, Han C, Zhang X, Xu K, Bian J, Dong L (2014) Poly(L-lactide)/poly(D-lactide)/clay nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. Polm Eng Sci 54:914–924

    CAS  Google Scholar 

  30. Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem B 112:16461–16468

    CAS  PubMed  Google Scholar 

  31. Tian H, Shao J, Ding Y, Li Y, Li X, Hu H (2014) Electrohydrodynamic micro-/nanostructuring processes based on prepatterned polymer and prepatterned template. Macromolecules 47:1439–1448

    Google Scholar 

  32. Brizzolara D, Cantow HJ, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197

    CAS  Google Scholar 

  33. Okihara T, Tsuji M, Kawaguchi A, Katayama K, Tsuji H, Hyon SH, Ikada Y (1991) Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J Macromol Sci B 30:119–140

    CAS  Google Scholar 

  34. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Differences in the CH3···O=C interactions among poly(L-lactide), poly(L-lactide)/poly(D-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. J Mol Struct 735:249–257

    Google Scholar 

  35. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) C Interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 38:1822–1828

    CAS  Google Scholar 

  36. Liu H, Chen F, Liu B, Estep G, Zhang J (2010) Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 43:6058–6066

    CAS  Google Scholar 

  37. Chen F, Zhang J (2009) A new approach for morphology control of poly(butylene adipate-co-terephthalate) and soy protein blends. Polymer 50:3770–3777

    CAS  Google Scholar 

  38. Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: The effects of concentration and compatibilization. Macromolecules 28:2647–2657

    CAS  Google Scholar 

  39. Pogodina NV, Lavrenko VP, Srinivas S, Winter HH (2001) Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization. Polymer 42:9031–9043

    CAS  Google Scholar 

  40. Zhao H, Bian Y, Li Y, Dong Q, Han C, Dong L (2014) Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J Mater Chem A 2:8881–8892

    CAS  Google Scholar 

  41. Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113

    CAS  Google Scholar 

  42. Li Y, Han C, Bian J, Han L, Dong L, Gao G (2012) Rheology and biodegradation of polylactide/silica nanocomposites. Polym Compos 33:1719–1727

    CAS  Google Scholar 

  43. Han CD, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539

    CAS  Google Scholar 

  44. Wu D, Wu L, Zhang M, Zhao Y (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584

    CAS  Google Scholar 

  45. Chen F, Zhang J (2010) In-situ poly(butylene adipate-co-terephthalate)/soy protein concentrate composites: effects of compatibilization and composition on properties. Polymer 51:1812–1819

    CAS  Google Scholar 

  46. Dacko P, Kowalczuk M, Janeczek H, Sobota M (2006) Physical properties of the biodegradable polymer compositions containing natural polyesters and their synthetic analogues. Macromol Symp 239:209–216

    CAS  Google Scholar 

  47. Sakai F, Nishikawa K, Inoue Y, Yazawa K (2009) Nucleation enhancement effect in poly(L-lactide) (PLLA)/poly(ε-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules 42:8335–8342

    CAS  Google Scholar 

  48. Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415

    CAS  PubMed  Google Scholar 

  49. Han L, Han C, Zhang H, Chen S, Dong L (2012) Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co-4- hydroxybutyrate). Polym Compos 33:850–859

    CAS  Google Scholar 

  50. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    CAS  PubMed  Google Scholar 

  51. Li H, Li Q, Yan M (2011) Influence of operation procedures on Vicat Softening Temperature of thermoplastic materials. Adv Mater Res 291–294:1820–1824

    Google Scholar 

Download references

Funding

This work is supported by the Chinese Academy of Science and Technology Service Network Planning (KFJ-STS-QYZD-140), a program of Cooperation of Hubei Province and Chinese Academy of Sciences, Innovation team project of Beijing Institute of Science and Technology (IG201703N) and “13th five-year” Science and Technology Research Program of the Education Department of Jilin Province (JJKH20190862KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyu Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, L., Han, C. et al. Biodegradable blends of poly(butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance. Colloid Polym Sci 298, 463–475 (2020). https://doi.org/10.1007/s00396-020-04636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04636-1

Keywords

Navigation