Skip to main content
Log in

Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A theory of the dynamic electrophoresis of a spherical colloidal particle with a slip surface in an oscillating electric field is developed. The slipping length on the particle surface, which is the measure of the degree of the particle surface hydrophobicity, is introduced. The general expression of the particle electrophoretic mobility and its approximate analytic expressions for a particle carrying a low zeta potential are derived.

Dynamic electrophoretic mobility of a sphere with a slip surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc Roy Soc London Ser A 133:106–129

    Article  CAS  Google Scholar 

  2. Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364

    CAS  Google Scholar 

  3. O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626

    Article  CAS  Google Scholar 

  4. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  5. Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans II 79:1613–1628

    Article  CAS  Google Scholar 

  6. van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York

    Google Scholar 

  7. Hunter RJ (1989) Foundations of colloid science, vol 2. Oxford University Press, London

    Google Scholar 

  8. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134

    Article  CAS  Google Scholar 

  9. Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271

    Article  CAS  Google Scholar 

  10. Lyklema J (1995) Fundamentals of interface and colloid science, solid-liquid interfaces, vol 2. Academic Press, New York

    Google Scholar 

  11. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York

    Google Scholar 

  12. Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam

    Google Scholar 

  13. Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles, Micro, Nano. Atto-Engineering, CRC Press, Boca Raton

    Google Scholar 

  14. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, Hoboken

    Book  Google Scholar 

  15. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  16. Vinogradova O (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56:31–60

    Article  CAS  Google Scholar 

  17. Churaev NV, Ralston J, Sergeeva IP, Sobolev VD (2002) Electrokinetic properties of methylated quartz capillaries. Adv Colloid Interf Sci 96:265–278

    Article  CAS  Google Scholar 

  18. Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897

    Article  CAS  Google Scholar 

  19. Bocquet L, Barrat J-L (2007) Flow boundary conditions from nano-to microscales. Soft Matter 3:685–693

    Article  CAS  Google Scholar 

  20. Bouzigues CI, Tabeling P, Bocquet L (2008) Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys Rev Lett 101:114503

    Article  CAS  Google Scholar 

  21. Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21:042001

    Article  Google Scholar 

  22. Park HM (2013) Electrophoresis of particles with Navier velocity slip. Electrophoresis 34:651–661

    Article  CAS  Google Scholar 

  23. Bhattacharyya S, Majee PS (2017) Electrophoresis of a polarizable charged colloid with hydrophobic surface: a numerical study. Phys Rev E 95:042605

    Article  Google Scholar 

  24. Gopmandal PP, Bhattacharyya S, Ohshima H (2017) On the similarity between the electrophoresis of a liquid drop and a spherical hydrophobic particle. Colloid Polym Sci 295:2077–2082

    Article  CAS  Google Scholar 

  25. Kumar B, Gopmandal PP, Sinha RK, Ohshima H (2019) Electrophoresis of hydrophilic/hydrophobic rigid colloid with effects of relaxation and ion size. Electrophoresis 40:1282–1292

    Article  CAS  Google Scholar 

  26. Ohshima H (2019) Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution. Adv Colloid Interf Sci 272:101996

    Article  CAS  Google Scholar 

  27. Ohshima H (2020) Electrophoretic mobility of a cylindrical colloidal particle with a slip surface. Colloid Polym Sci 298:151–156 Note that the curly braces are missing on the right-hand side of Eq. (45), which should be μ// = (εrεoζ/η){1+K1(κa)κΛ/K0(κa)}

    Article  CAS  Google Scholar 

  28. O'Brien RW (1988) Electro-acoustic effects in a dilute suspension of spherical particles. J Fluid Mech 190:71–86

    Article  CAS  Google Scholar 

  29. Babchin AJ, Chow RS, Sawatzky RP (1989) Electrokinetic measurements by electroacoustical methods. Adv Colloid Interf Sci 30:111–151

    Article  CAS  Google Scholar 

  30. Sawatzky RP, Babchin A (1993) Hydrodynamics of electrophoretic motion in an alternating electric field. J Fluid Mech 246:321–334

    Article  CAS  Google Scholar 

  31. Fixman M (1983) Thin double layer approximation for electrophoresis and dielectric response. J Chem Phys 78:1483–1491

    Article  CAS  Google Scholar 

  32. James RO, Texter J, Scales P (1991) Frequency dependence of electroacoustic (electrophoretic) mobilities. Langmuir 7:1993–1997

    Article  CAS  Google Scholar 

  33. Mangelsdorf CS, White LR (1992) Electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J Chem Soc Faraday Trans 88:3567–3581

    Article  CAS  Google Scholar 

  34. Mangelsdorf CS, White LR (1993) Low-zeta-potential analytic solution for the electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J Colloid Interface Sci 160:275–287

    Article  CAS  Google Scholar 

  35. Ohshima H (1996) Dynamic electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 179:431–438

    Article  CAS  Google Scholar 

  36. Ohshima H (2005) Approximate analytic expression for the dynamic electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. Langmuir 21:9818–9823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr. Partha P. Gopmandal of National Institute of Technology Durgapru and Prof. Somnath Bhattacharyya of Indian Institute of Technology Kharagpur for introducing me in the field of electrokinetics of a colloidal particle with a slip surface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field. Colloid Polym Sci 298, 459–462 (2020). https://doi.org/10.1007/s00396-020-04635-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04635-2

Keywords

Navigation