Skip to main content
Log in

Covalent organic hollow nanospheres constructed by using AIE-active units for nitrophenol explosives detection

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of conjugated nanomaterials with high sensitivity and super-amplified quenching effect for the detection of nitrophenol explosives is still a great challenge. Herein, we developed conjugated hollow nanospheres constructed by using aggregation-induced emission (AIE) active 1,3,5-tris(4-formyl-phenyl)benzene (TFPB). The high emission hollow nanospheres with uniform size and admirable dispersiveness exhibited obvious fluorescence quenching response with the addition of nitrophenol explosives owing to the photoinduced electron transfer (PET) from the hollow nanospheres to nitrophenol explosives. The Stern-Volmer constants of hollow spheres for 2,4,6-trinitrophenol (TNP), 4-nitrophenol (NP) and 2,4-dinitrophenol (DNP) can reach 9.67×105, 3.14×105 and 4.8×104 M−1, respectively. Furthermore, the handy test paper coated with hollow nanospheres was prepared and showed a good response toward TNP solutions and vapor. The study provides a novel strategy to construct AIE-active conjugated hollow nanospheres for efficient nitrophenol explosives sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lichtenstein A, Havivi E, Shacham R, Hahamy E, Leibovich R, Pevzner A, Krivitsky V, Davivi G, Presman I, Elnathan R, Engel Y, Flaxer E, Patolsky F. Nat Commun, 2014, 5: 4195

    PubMed  CAS  Google Scholar 

  2. Wang DH, Cui YZ, Tao FR, Niu QF, Li TD, Xu H. Sens Actuat B-Chem, 2016, 225: 319–326

    CAS  Google Scholar 

  3. Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TTS, Bisker G, Liu P, Strano MS. Nat Mater, 2017, 16: 264–272

    PubMed  CAS  Google Scholar 

  4. Sodkhomkhum R, Masik M, Watchasit S, Suksai C, Boonmak J, Youngme S, Wanichacheva N, Ervithayasuporn V. Sens Actuat B-Chem, 2017, 245: 665–673

    CAS  Google Scholar 

  5. Gao K, Guo Y, Niu Q, Han L, Zhou L, Wang L. Sens Actuat B-Chem, 2018, 262: 298–305

    CAS  Google Scholar 

  6. Sylvia JM, Janni JA, Klein JD, Spencer KM. Anal Chem, 2000, 72: 5834–5840

    PubMed  CAS  Google Scholar 

  7. Robert H, Prado PJ. Appl Magn Reson, 2004, 25: 395–410

    CAS  Google Scholar 

  8. Roscioli KM, Davis E, Siems WF, Mariano A, Su W, Guharay SK, Hill Jr. HH. Anal Chem, 2011, 83: 5965–5971

    PubMed  CAS  Google Scholar 

  9. Harding G. Radiat Phys Chem, 2004, 71: 869–881

    CAS  Google Scholar 

  10. Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F. Angew Chem Int Ed, 2010, 49: 6830–6835

    CAS  Google Scholar 

  11. McQuade DT, Pullen AE, Swager TM. Chem Rev, 2000, 100: 2537–2574

    PubMed  CAS  Google Scholar 

  12. Rose A, Zhu Z, Madigan CF, Swager TM, Bulović V. Nature, 2005, 434: 876–879

    PubMed  CAS  Google Scholar 

  13. Hu Z, Deibert BJ, Li J. Chem Soc Rev, 2014, 43: 5815–5840

    PubMed  CAS  Google Scholar 

  14. Chen Q, Cheng J, Wang J, Li L, Liu Z, Zhou X, You Y, Huang W. Sci China Chem, 2019, 62: 205–211

    CAS  Google Scholar 

  15. Li QY, Ma Z, Zhang WQ, Xu JL, Wei W, Lu H, Zhao X, Wang XJ. Chem Commun, 2016, 52: 11284–11287

    CAS  Google Scholar 

  16. Kumar V, Maiti B, Chini MK, De P, Satapathi S. Sci Rep, 2019, 9: 7269

    PubMed  PubMed Central  Google Scholar 

  17. Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J Am Chem Soc, 2016, 138: 5797–5800

    PubMed  CAS  Google Scholar 

  18. Tawfik SM, Sharipov M, Kakhkhorov S, Elmasry MR, Lee YI. Adv Sci, 2019, 6: 1801467

    Google Scholar 

  19. Ma H, He C, Li X, Ablikim O, Zhang S, Zhang M. Sens Actuat B-Chem, 2016, 230: 746–752

    CAS  Google Scholar 

  20. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    PubMed  CAS  Google Scholar 

  21. Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Chem Soc Rev, 2011, 40: 79–93

    PubMed  CAS  Google Scholar 

  22. Thomas SW, Joly GD, Swager TM. Chem Rev, 2007, 107: 1339–1386

    PubMed  CAS  Google Scholar 

  23. Chen J, Xie Z, Lam JWY, Law CCW, Tang BZ. Macromolecules, 2003, 36: 1108–1117

    CAS  Google Scholar 

  24. Yuan WZ, Zhao H, Shen XY, Mahtab F, Lam JWY, Sun JZ, Tang BZ. Macromolecules, 2009, 42: 9400–9411

    CAS  Google Scholar 

  25. Chua MH, Zhou H, Lin TT, Wu J, Xu JW. J Polym Sci Part A, 2017, 55: 672–681

    CAS  Google Scholar 

  26. Liang G, Weng LT, Lam JWY, Qin W, Tang BZ. ACS Macro Lett, 2014, 3: 21–25

    CAS  Google Scholar 

  27. Zhou H, Li J, Chua MH, Yan H, Tang BZ, Xu J. Polym Chem, 2014, 5: 5628–5637

    CAS  Google Scholar 

  28. Chen T, Yin H, Chen ZQ, Zhang GF, Xie NH, Li C, Gong WL, Tang BZ, Zhu MQ. Small, 2016, 12: 6547–6552

    PubMed  CAS  Google Scholar 

  29. Liu J, Zhong Y, Lu P, Hong Y, Lam JWY, Faisal M, Yu Y, Wong KS, Tang BZ. Polym Chem, 2010, 1: 426–429

    CAS  Google Scholar 

  30. Liu S, Jiang S, Xu J, Huang Z, Li F, Fan X, Luo Q, Tian W, Liu J, Xu B. Macromol Rapid Commun, 2019, 40: 1800892

    Google Scholar 

  31. Fan X, Tian R, Liu S, Qiao S, Luo Q, Yan T, Fu S, Zhang X, Xu J, Liu J. Polym Chem, 2018, 9: 1160–1163

    CAS  Google Scholar 

  32. Fan X, Tian R, Wang T, Liu S, Wang L, Xu J, Liu J, Ma M, Wu Z. Nanoscale, 2018, 10: 22155–22160

    PubMed  CAS  Google Scholar 

  33. Baek K, Hwang I, Roy I, Shetty D, Kim K. Acc Chem Res, 2015, 48: 2221–2229

    PubMed  CAS  Google Scholar 

  34. Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z. Nat Commun, 2014, 5: 3002

    PubMed  Google Scholar 

  35. Guo CX, Li CM. Phys Chem Chem Phys, 2010, 12: 12153–12159

    PubMed  CAS  Google Scholar 

  36. Huang KC, Hu CW, Tseng CY, Liu CY, Yeh MH, Wei HY, Wang CC, Vittal R, Chu CW, Ho KC. J Mater Chem, 2012, 22: 14727–14733

    CAS  Google Scholar 

  37. Li W, Zhang Q, Zheng G, Seh ZW, Yao H, Cui Y. Nano Lett, 2013, 13: 5534–5540

    PubMed  CAS  Google Scholar 

  38. Li XL, Lou TJ, Sun XM, Li YD. Inorg Chem, 2004, 43: 5442–5449

    PubMed  CAS  Google Scholar 

  39. Cheng Z, Dai Z, Li J, Wang H, Huang MR, Li XG, Liao Y. Chem Eng J, 2019, 357: 776–786

    CAS  Google Scholar 

  40. Das G, Skorjanc T, Sharma SK, Gándara F, Lusi M, Shankar Rao DS, Vimala S, Krishna Prasad S, Raya J, Han DS, Jagannathan R, Olsen JC, Trabolsi A. J Am Chem Soc, 2017, 139: 9558–9565

    PubMed  CAS  Google Scholar 

  41. Wei Z, Wan M. Adv Mater, 2002, 14: 1314–1317

    CAS  Google Scholar 

  42. Hu M, Yang W, Liu S, Zhu W, Li Y, Hu B, Chen Z, Shen R, Cheong WC, Wang Y, Zhou K, Peng Q, Chen C, Li Y. Chem Sci, 2019, 10: 614–619

    PubMed  CAS  Google Scholar 

  43. Wang Z, Lu P, Chen S, Gao Z, Shen F, Zhang W, Xu Y, Kwok HS, Ma Y. J Mater Chem, 2011, 21: 5451–5456

    CAS  Google Scholar 

  44. Wang B, Xie Z, Li Y, Yang Z, Chen L. Macromolecules, 2018, 51: 3443–3449

    CAS  Google Scholar 

  45. Taylor J, Brandbyge M, Stokbro K. Phys Rev Lett, 2002, 89: 138301

    PubMed  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    PubMed  CAS  Google Scholar 

  47. Cheng J, Feng S, Han S, Zhang X, Chen Y, Zhou X, Wang R, Li X, Hu H, Zhang J. ACS Nano, 2016, 10: 9957–9973

    PubMed  CAS  Google Scholar 

  48. Zhou X, Zhao Y, Chen S, Han S, Xu X, Guo J, Liu M, Che L, Li X, Zhang J. Biomacromolecules, 2016, 17: 2540–2554

    PubMed  CAS  Google Scholar 

  49. Shanmugaraju S, Dabadie C, Byrne K, Savyasachi AJ, Umadevi D, Schmitt W, Kitchen JA, Gunnlaugsson T. Chem Sci, 2017, 8: 1535–1546

    PubMed  CAS  Google Scholar 

  50. Feng HT, Zheng YS. Chem Eur J, 2014, 20: 195–201

    PubMed  CAS  Google Scholar 

  51. Xiong S, Marin L, Duan L, Cheng X. Carbohydr Polym, 2019, 225: 115253

    PubMed  CAS  Google Scholar 

  52. Zheng B, Li Y, Tao F, Cui Y, Li T. Sens Actuat B-Chem, 2017, 241: 357–363

    CAS  Google Scholar 

  53. Valeur B. Molecular Fluorescence: Principles and Applications. Weinheim: Wiley, 2005. 47

    Google Scholar 

  54. Lakowicz JR. Principles of Fluorescence Spectroscopy. New York: Springer, 2006. 48

    Google Scholar 

  55. Sohn H, Sailor MJ, Magde D, Trogler WC. J Am Chem Soc, 2003, 125: 3821–3830

    PubMed  CAS  Google Scholar 

  56. Nagarkar SS, Joarder B, Chaudhari AK, Mukherjee S, Ghosh SK. Angew Chem Int Ed, 2013, 52: 2881–2885

    CAS  Google Scholar 

  57. Ma XS, Cui YZ, Ding YQ, Tao FR, Zheng B, Yu RH, Huang W. Sens Actuat B-Chem, 2017, 238: 48–57

    CAS  Google Scholar 

  58. Germain ME, Knapp MJ. Chem Soc Rev, 2009, 38: 2543–2555

    PubMed  CAS  Google Scholar 

  59. Sun X, Wang Y, Lei Y. Chem Soc Rev, 2015, 44: 8019–8061

    PubMed  CAS  Google Scholar 

  60. Tasci E, Aydin M, Gorur M, Gürek AG, Yilmaz F. J Appl Polym Sci, 2018, 135: 46310

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21835001, 51773080, 21674041, 51573068, 21221063), Program for Changbaishan Scholars of Jilin Province, Jilin Province Project (20160101305JC), and the “Talents Cultivation Program” of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqiu Liu or Wenjing Tian.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Liu, S., Meng, L. et al. Covalent organic hollow nanospheres constructed by using AIE-active units for nitrophenol explosives detection. Sci. China Chem. 63, 497–503 (2020). https://doi.org/10.1007/s11426-019-9667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9667-1

Keywords

Navigation