Synlett 2020; 31(11): 1102-1106
DOI: 10.1055/s-0040-1708002
letter
© Georg Thieme Verlag Stuttgart · New York

Acetic Acid Promoted Direct Iodination of Terminal Alkynes with N-Iodosuccinimide: Efficient Preparation of 1-Iodoalkynes

Ming Yao
a   Jingchu University of Technology, Jingmen, 448000, P. R. of China   Email: yaomingcep@jcut.edu.cn
,
Jingjing Zhang
b   Wuhan Institute of Technology, Wuhan, 430205, P. R. of China
,
Sen Yang
a   Jingchu University of Technology, Jingmen, 448000, P. R. of China   Email: yaomingcep@jcut.edu.cn
,
E Liu
a   Jingchu University of Technology, Jingmen, 448000, P. R. of China   Email: yaomingcep@jcut.edu.cn
,
Hangxing Xiong
a   Jingchu University of Technology, Jingmen, 448000, P. R. of China   Email: yaomingcep@jcut.edu.cn
› Author Affiliations
We are grateful to the Hubei Provincial Department of Education (T201719) for generous financial support.
Further Information

Publication History

Received: 05 February 2020

Accepted after revision: 02 March 2020

Publication Date:
12 March 2020 (online)


Abstract

An efficient and highly chemoselective approach for the direct iodination of terminal alkynes using acetic acid as N-iodosuccinimide activated reagent under metal-free conditions has been developed. This facile process tolerates a variety of terminal alkynes and provides the desired products in good to excellent yields (up to 99%).

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Chem. Rev. 2018; 118: 8474
    • 1b Wu W, Jiang H. Acc. Chem. Res. 2014; 47: 82483
    • 1c Shi W, Lei A. Tetrahedron Lett. 2014; 55: 2763
    • 1d Brand JP, Waser J. Chem. Soc. Rev. 2012; 41: 4165

      For selected recent examples, see:
    • 2a de Orbe ME, Zanini M, Quinonero O, Echavarren AM. ACS Catal. 2019; 9: 7817
    • 2b Zeng X, Chen B, Lu Z, Hammond GB, Xu B. Org. Lett. 2019; 21: 2772
    • 2c Khake SM, Jain S, Patel UN, Gonnade RG, Vanka K, Punji B. Organometallics 2018; 37: 2037
    • 2d Zeng X, Liu S, Hammond GB, Xu B. ACS Catal. 2018; 8: 904
    • 2e Szuroczki P, Boros B, Kollar L. Tetrahedron 2018; 74: 6129
    • 2f Jiang G, Li J, Zhu C, Wu W, Jiang H. Org. Lett. 2017; 19: 4440
    • 2g Chung R, Vo A, Hein JE. ACS Catal. 2017; 7: 2505
    • 2h Gonzalez-Liste PJ, Francos J, Garcia-Garrido SE, Cadierno V. J. Org. Chem. 2017; 82: 1507
    • 2i Huang L, Olivares AM, Weix DJ. Angew. Chem. Int. Ed. 2017; 56: 11901
    • 2j Jiang G, Zhu C, Li J, Wu W, Jiang H. Adv. Synth. Catal. 2017; 359: 1208
    • 2k Li J, Hu W, Li C, Yang S, Wu W, Jiang H. Org. Chem. Front. 2017; 4: 373
    • 2l Ramanathan M, Liu S. Tetrahedron 2017; 73: 4317
    • 2m Singh VK, Upadhyay A, Singh RK. P. Tetrahedron Lett. 2017; 58: 156
    • 2n Reddy CR, Panda SA, Ramaraju A. J. Org. Chem. 2017; 82: 944
    • 2o Zeng X, Liu S, Shi Z, Xu B. Org. Lett. 2016; 18: 4770
    • 2p Ye M, Wen Y, Li H, Fu Y, Wang Q. Tetrahedron Lett. 2016; 57: 4983
    • 2q Chowdhury RM, Wilden JD. Org. Biomol. Chem. 2015; 13: 5859
    • 2r Mader S, Molinari L, Rudolph M, Rominger F, Hashmi SK. Chem. Eur. J. 2015; 21: 3910
    • 3a Kabalka GW, Mereddy AR. Tetrahedron 2004; 45: 1417
    • 3b Luithle JE, Pietruszka J. Eur. J. Org. Chem. 2000; 2557
    • 3c Blackmore IJ, Boa AN, Murray EJ, Dennis M, Woodward S. Tetrahedron Lett. 1999; 40: 6671
    • 3d Mandai T, Matsumoto T, Kawada M, Tsuji J. J. Org. Chem. 1992; 57: 6090
    • 4a Starkov P, Rota F, D’Oyley JM, Sheppard TD. Adv. Synth. Catal. 2012; 354: 3217
    • 4b Nishikawa T, Shibuya S, Hosokawa S, Isobe M. Synlett 1994; 485
  • 6 Pelletier G, Lie S, Mousseau JJ, Charette AB. Org. Lett. 2012; 14: 5464
    • 7a Wang Z, Campagna S, Yang K, Xu G, Pierce ME, Fortunak JM, Confalone PN. J. Org. Chem. 2000; 65: 1889
    • 7b Michel P, Rassat A. Tetrahedron Lett. 1999; 40: 8579
    • 7c Hollingworth GJ, Richecoeur AM. E, Sweeney J. J. Chem. Soc., Perkin Trans. 1 1996; 2833
    • 7d Hollingworth GJ, Sweeney J. Synlett 1993; 463
    • 7e Bonnet B, Le Gallic Y, Ple G, Duhamel L. Synthesis 1993; 1071
    • 7f Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 3769
    • 8a Yao M, Zhang J, Yang S, Xiong H, Li L, Liu E, Shi H. RSC Adv. 2020; 10: 3946
    • 8b Ferris T, Carroll L, Mease RC, Spivey AC, Aboagye EO. Tetrahedron Lett. 2019; 60: 936
    • 8c Chen S, Zhang X, Zhao H, Guo X, Hu X. Chin. J. Org. Chem. 2018; 38: 1172
    • 8d Liu X, Chen G, Li C, Liu P. Synlett 2018; 2051
    • 8e Rao DS, Reddy TR, Kashyap S. Org. Biomol. Chem. 2018; 16: 1508
    • 8f Shi W, Guan Z, Cai P, Chen H. J. Catal. 2017; 353: 199
    • 8g Kodumuri S, Peraka S, Mameda N, Chevella D, Banothu R, Gajula KS, Thokali S, Nama N. ChemistrySelect 2017; 2: 748
    • 8h Liu Y, Huang D, Huang J, Maruoka K. J. Org. Chem. 2017; 82: 11865
    • 8i Gomez-Herrera A, Nahra F, Brill M, Nolan SP, Cazin CS. J. ChemCatChem 2016; 8: 3381
    • 8j Zhang S, Chen Y, Wang J, Pan Y, Xu Z, Tung C.-H. Org. Chem. Front. 2015; 2: 578
    • 8k Mader S, Molinari L, Rudolph M, Rominger F, Hashmi SK. Chem. Eur. J. 2015; 21: 3910
    • 8l Li M, Li Y, Zhao B, Liang F, Jin L. RSC Adv. 2014; 4: 30046
    • 8m Nouzarian M, Hosseinzadeh R, Golchoubian H. Synth. Commun. 2013; 43: 2913
    • 8n Wang B, Zhang J, Wang X, Liu N, Chen W, Hu Y. J. Org. Chem. 2013; 78: 10519
    • 8o Uasnov DL, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 1286
    • 8p Juricek M, Stout K, Kouwer PH. J, Rowan AE. Org. Lett. 2011; 13: 3494
    • 8q Uasnov DL, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 1286
    • 8r Reddy KR, Venkateshwar M, Maheswari CU, Kumar PS. Tetrahedron Lett. 2010; 51: 2170
    • 8s Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV. Angew. Chem. Int. Ed. 2009; 48: 8018
    • 8t Chen S.-N, Hung T.-T, Lin T.-C, Tsai F.-Y. J. Chin. Chem. Soc. 2009; 56: 1078
    • 8u Meng L, Cai P, Guo Q, Xue S. Synth. Commun. 2008; 38: 225
    • 8v Yan J, Li J, Cheng D. Synlett 2007; 2442
    • 8w Webb JA, Klijn JE, Hill PA, Bennett JL, Goroff NS. J. Org. Chem. 2004; 69: 660
    • 8x Nishiguchi I, Kanbe O, Itoh K, Maekawa H. Synlett 2000; 89
    • 8y Rao ML. N, Periasamy M. Synth. Commun. 1995; 25: 2295
    • 8z Brunel Y, Rousseau G. Tetrahedron Lett. 1995; 36: 2619
    • 8aa Rossi R. Tetrahedron 1983; 39: 287
    • 9a Bergstrom M, Suresh G, Naidu VR, Unelius CR. Eur. J. Org. Chem. 2017; 3234
    • 9b Bovonsombat P, Leykajarakul J, Khan C, Pla-On K, Krause MM, Khanthapura P, Ali R, Doowa N. Tetrahedron Lett. 2009; 50: 2664
    • 9c Chaikovskii VK, Filimonov VD, Skorokhodov VL, Ogorodnikov VD. Russ. J. Org. Chem. 2007; 43: 1278
    • 9d Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J. Am. Chem. Soc. 2004; 126: 15770
    • 9e Castanet AS, Colobert F, Broutin PE. Tetrahedron Lett. 2002; 43: 5047
    • 9f Olah GA, Wang Q, Sanford G, Prakash GK. S. J. Org. Chem. 1993; 58: 3194
  • 10 Okamoto N, Miwa Y, Minami H, Takeda K, Yanada R. J. Org. Chem. 2011; 76: 9133
    • 11a Kumar GS, Kumar AS, Meshram HM. Synlett 2016; 399
    • 11b Ogata Y, Aoki K. J. Am. Chem. Soc. 1968; 90: 6187
    • 11c Chen EM, Keefer RM, Andrews LJ. J. Am. Chem. Soc. 1967; 89: 428
  • 12 Iodination of Terminal Alkynes; General Procedure: To a mixture of terminal alkynes (2.0 mmol), acetic acid (2.6 mmol) and 4 Å MS (200 mg) in MeCN (10 mL) was added N-iodosuccinimide (2.2 mmol) and the resulting mixture was heated at 80 °C for 1.5 h. After completion of the reaction, the reaction was quenched with saturated aqueous sodium thiosulfate and the mixture was extracted with ethyl acetate (10 × 3 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel. (Iodoethynyl)benzene (2aa): Prepared according to the general procedure. Purification by column chromatography (petroleum ether) gave 2aa in 91% yield as a pale-yellow oil. 1H NMR (CDCl3, 400 MHz): δ = 7.47–7.44 (m, 2 H), 7.34–7.32 (m, 3 H). 13C NMR (CDCl3, 101 MHz): δ = 132.38, 128.88, 128.32, 123.38, 94.23, 6.74. The overall spectroscopic data are in agreement with assigned structures and consistent with reported data.8c