Skip to main content
Log in

In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Searching for inexpensive, efficient and durable electrocatalysts with earth-abundant elements toward the hydrogen evolution reaction (HER) is of vital importance for the future sustainable hydrogen economy, yet still remains a formidable challenge. Herein, a facile template-engaged strategy is demonstrated for the direct in-situ growth of Ni nanoparticles and N-doped carbon nanotubes on carbon nanorod substrates, forming a hierarchically branched architecture (abbreviated as Ni@N-C NT/NRs hereafter). The elaborate construction of such unique hierarchical structure with tightly encapsulated Ni nanoparticles and open configuration endows the as-fabricated Ni@N-C NT/NRs with abundant well-dispersed active sites, enlarged surface area, reduced resistances of charge transfer and mass diffusion, and reinforced mechanical robustness. As a consequence, the optimal Ni@N-C NT/NR catalyst demonstrates superior electrocatalytic activity with relatively low overpotential of 134 mV to deliver a current density of 10 mA·cm−2 and excellent stability for HER in 0.1 M KOH, holding a great promise for practical scalable H2 production. More importantly, this work offers a reliable methodology for feasible fabrication of robust high-performance carbon-based hierarchical architectures for a variety of electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, L. J.; Zheng, S. Z.; Wei, H. R.; Du, L. L.; Zhu, Z. Y.; Chen, J.; Yang, D. C. Palladium/bismuth/copper hierarchical nano-architectures for efficient hydrogen evolution and stable hydrogen detection. ACS Appl. Mater. Interfaces2019, 11, 6248–6256.

    CAS  Google Scholar 

  2. Jia, N.; Liu, Y. P.; Wang, L.; Chen, P.; Chen, X. B.; An, Z. W.; Chen, Y. 0.2 V electrolysis voltage-driven alkaline hydrogen production with nitrogen-doped carbon nanobowl-supported ultrafine Rh nanoparticles of 1.4 nm. ACS Appl. Mater. Interfaces2019, 11, 35039–35049.

    CAS  Google Scholar 

  3. Deng, S. J.; Zhang, K. L.; Xie, D.; Zhang, Y.; Zhang, Y. Q.; Wang, Y. D.; Wu, J. B.; Wang, X. L.; Fan, H. J.; Xia, X. H. et al. High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett.2019, 11, 12.

    CAS  Google Scholar 

  4. Hao, S.; Yang, L. B.; Liu, D. N.; Kong, R. M.; Du, G.; Asiri, A. M.; Yang, Y. C.; Sun, X. P. Integrating natural biomass electro-oxidation and hydrogen evolution: Using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chem. Commun.2017, 53, 5710–5713.

    CAS  Google Scholar 

  5. Li, T. F.; Luo, G.; Liu, K. H.; Li, X.; Sun, D. M.; Xu, L.; Li, Y. F.; Tang, Y. W. Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube-grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv. Funct. Mater.2018, 28, 1805828.

    Google Scholar 

  6. Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater.2017, 7, 1700020.

    Google Scholar 

  7. Zhang, Y.; Liu, Y. W.; Ma, M.; Ren, X.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A Mn-doped Ni2P nanosheet array: An efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chem. Commun.2017, 53, 11048–11051.

    CAS  Google Scholar 

  8. Liu, M.; Zhang, R.; Zhang, L. X.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R. M.; Sun, X. P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorg. Chem. Front.2017, 4, 420–423.

    CAS  Google Scholar 

  9. Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun.2014, 5, 4695.

    CAS  Google Scholar 

  10. Chen, Z. L.; Wu, R. B.; Liu, Y.; Ha, Y.; Guo, Y. H.; Sun, D. L.; Liu, M.; Fang, F. Ultrafine Co nanoparticles encapsulated in carbonnanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater.2018, 30, 1802011.

    Google Scholar 

  11. Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res.2017, 10, 2599–2609.

    CAS  Google Scholar 

  12. Ren, X.; Wang, W. Y.; Ge, R. X.; Hao, S.; Qu, F. L.; Du, G.; Asiri, A. M.; Wei, Q.; Chen, L.; Sun, X. P. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chem. Commun.2017, 53, 9000–9003.

    CAS  Google Scholar 

  13. Ouyang, T.; Chen, A. N.; He, Z. Z.; Liu, Z. Q.; Tong, Y. X. Rational design of atomically dispersed nickel active sites in β-Mo2C for the hydrogen evolution reaction at all pH values. Chem. Commun.2018, 54, 9901–9904.

    CAS  Google Scholar 

  14. Zhang, X.; Zhang, Y. Y.; Zhang, Y.; Jiang, W. J.; Zhang, Q. H.; Yang, Y. G.; Gu, L.; Hu, J. S.; Wan, L. J. Phase-controlled synthesis of 1T-MoSe2/NiSe heterostructure nanowire arrays via electronic injection for synergistically enhanced hydrogen evolution. Small Methods2019, 3, 1800317.

    Google Scholar 

  15. Ha, Y.; Shi, L. X.; Chen, Z. L.; Wu, R. B. Phase-transited lysozymedriven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 2019, 6, 1900272.

    Google Scholar 

  16. Chen, Z. L.; Ha, Y.; Jia, H. X.; Yan, X. X.; Chen, M.; Liu, M.; Wu, R. B. Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater.2019, 9, 1803918.

    Google Scholar 

  17. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc.2014, 136, 7587–7590.

    CAS  Google Scholar 

  18. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal.2017, 7, 7196–7225.

    CAS  Google Scholar 

  19. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R. S.; Fan, H. J. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy Mater.2016, 6, 1600221.

    Google Scholar 

  20. Yu, Z. Y.; Duan, Y.; Gao, M. R.; Lang, C. C.; Zheng, Y. R.; Yu, S. H. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci.2017, 8, 968–973.

    CAS  Google Scholar 

  21. Wang, H.; Cao, Y. J.; Zou, G. F.; Yi, Q. H.; Guo, J.; Gao, L. J. High-performance hydrogen evolution electrocatalyst derived from Ni3C nanoparticles embedded in a porous carbon network. ACS Appl. Mater. Interfaces2017, 9, 60–64.

    CAS  Google Scholar 

  22. Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core-shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano2016, 10, 684–694.

    CAS  Google Scholar 

  23. Xi, W.; Ren, Z. Y.; Kong, L. J.; Wu, J.; Du, S. C.; Zhu, J. Q.; Xue, Y. Z.; Meng, H. Y.; Fu, H. G. Dual-valence nickel nanosheets covered with thin carbon as bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A2016, 4, 7297–7304.

    CAS  Google Scholar 

  24. Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res.2017, 10, 415–425.

    CAS  Google Scholar 

  25. Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed.2019, 58, 4923–4928.

    CAS  Google Scholar 

  26. Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A2015, 3, 14942–14962.

    CAS  Google Scholar 

  27. Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano2014, 8, 5290–5296.

    CAS  Google Scholar 

  28. Jin, H. Y.; Liu, X.; Chen, S. M.; Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett.2019, 4, 805–810.

    CAS  Google Scholar 

  29. Zhao, L.; Wang, Q. C.; Zhang, X. Q.; Deng, C.; Li, Z. H.; Lei, Y. P.; Zhu, M. F. Combined electron and structure manipulation on Fe-containing N-doped carbon nanotubes to boost bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces2018, 10, 35888–35895.

    CAS  Google Scholar 

  30. Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater.2019, 29, 1902875.

    Google Scholar 

  31. Huang, C.; Zou, Y.; Ye, Y. Q.; Ouyang, T.; Xiao, K.; Liu, Z. Q. Unveiling the active sites of Ni-Fe phosphide/metaphosphate for efficient oxygen evolution under alkaline conditions. Chem. Commun.2019, 55, 7687–7690.

    CAS  Google Scholar 

  32. Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed.2019, 58, 13291–13296.

    CAS  Google Scholar 

  33. Su, H.; Wang, X. T.; Hu, J. X.; Ouyang, T.; Xiao, K.; Liu, Z. Q. Co-Mn spinel supported self-catalysis induced N-doped carbon nanotubes with high efficiency electron transport channels for zinc-air batteries. J. Mater. Chem. A2019, 7, 22307–22313.

    CAS  Google Scholar 

  34. Zhou, Z. X.; He, F.; Shen, Y. F.; Chen, X. H.; Yang, Y. R.; Liu, S. Q.; Mori, T.; Zhang, Y. J. Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. Chem. Commun.2017, 53, 2044–2047.

    CAS  Google Scholar 

  35. Huang, Y.; Song, X. N.; Deng, J.; Zha, C. Y.; Huang, W. J.; Wu, Y. L.; Li, Y. G. Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Appl. Catal. B: Environ.2019, 245, 656–661.

    CAS  Google Scholar 

  36. Fu, H. Q.; Zhang, L.; Wang, C. W.; Zheng, L. R.; Liu, P. F.; Yang, H. G. 1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation. ACS Energy Lett.2018, 3, 2021–2029.

    CAS  Google Scholar 

  37. Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal.2017, 7, 2357–2366.

    CAS  Google Scholar 

  38. Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano2016, 10, 2342–2348.

    CAS  Google Scholar 

  39. Sun, T.; Wang, J.; Chi, X.; Lin, Y. X.; Chen, Z. X.; Ling, X.; Qiu, C. T.; Xu, Y. S.; Song, L.; Chen, W. et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal.2018, 8, 7585–7592.

    CAS  Google Scholar 

  40. Chen, P. Z.; Zhou, T. P.; Chen, M. L.; Tong, Y.; Zhang, N.; Peng, X.; Chu, W. S.; Wu, X. J.; Wu, C. Z.; Xie, Y. Enhanced catalytic activity in nitrogen-anion modified metallic cobalt disulfide porous nanowire arrays for hydrogen evolution. ACS Catal.2017, 7, 7405–7411.

    CAS  Google Scholar 

  41. Hou, J. G.; Sun, Y. Q.; Li, Z. W.; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Sun, L. C. Electrical behavior and electron transfer modulation of nickel-copper nanoalloys confined in nickel-copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater.2018, 28, 1803278.

    Google Scholar 

  42. Pang, H.; Lu, Q. Y.; Li, Y. C.; Gao, F. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem. Commun.2009, 7542–7544.

  43. Shen, Y.; Lua, A. C.; Xi, J. Y.; Qiu, X. P. Ternary platinum-copper-nickel nanoparticles anchored to hierarchical carbon supports as free-standing hydrogen evolution electrodes. ACS Appl. Mater. Interfaces2016, 8, 3464–3472.

    CAS  Google Scholar 

  44. Sun, H.; Min, Y. X.; Yang, W. J.; Lian, Y. B.; Lin, L.; Feng, K.; Deng, Z.; Chen, M. Z.; Zhong, J.; Xu, L. et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting. ACS Catal.2019, 9, 8882–8892.

    CAS  Google Scholar 

  45. Wang, P.; Xiao, P. Y.; Zhong, S. X.; Chen, J. R.; Lin, H. J.; Wu, X. L. Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of bisphenol A. J. Mater. Chem. A2016, 4, 15450–15456.

    CAS  Google Scholar 

  46. Tessonnier, J. P.; Su, D. S. Recent progress on the growth mechanism of carbon nanotubes: A review. ChemSusChem2011, 4, 824–847.

    CAS  Google Scholar 

  47. Hossain, M. D.; Liu, Z. J.; Zhuang, M. H.; Yan, X. X.; Xu, G. L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. J.; Wong, H. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater.2019, 9, 1803689.

    Google Scholar 

  48. Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc.2017, 139, 8212–8221.

    CAS  Google Scholar 

  49. Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater.2019, 31, 1806312.

    Google Scholar 

  50. Wang, X.; Li, Z.; Wu, D. Y.; Shen, G. R.; Zou, C. Q.; Feng, Y.; Liu, H.; Dong, C. K.; Du, X. W. Porous cobalt-nickel hydroxide nanosheets with active cobalt ions for overall water splitting. Small2019, 15, 1804832.

    Google Scholar 

  51. Wang, Z. L.; Hao, X. F.; Jiang, Z.; Sun, X. P.; Xu, D.; Wang, J.; Zhong, H. X.; Meng, F. L.; Zhang, X. B. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc.2015, 137, 15070–15073.

    CAS  Google Scholar 

  52. Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano2016, 10, 11337–11343.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 21972068, 21875112, 21576139, 51871060, and 51672049), Natural Science Foundation of Jiangsu Province (No. BK20171473). The authors also thank the supports from National and Local Joint Engineering Research Center of Biomedical Functional Materials and a project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu or Renbing Wu.

Electronic Supplementary Material

12274_2020_2727_MOESM1_ESM.pdf

In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Gu, M., Wang, Y. et al. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis. Nano Res. 13, 975–982 (2020). https://doi.org/10.1007/s12274-020-2727-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2727-7

Keywords

Navigation